Video

Havonix Schulmedien-Verlag

Finanzmathematik: kurze Einführung - A.55

Die Finanzmathematik befasst sich natürlich mit der Berechnung von verschiedenen finanzmathematischen Problemen. In diesem Kapitel betrachten wir: 1.Zinseszins-Berechnungen, 2.Rentenrechnung (Ratensparen), 3.Annuitäten-Rechnung (Tilgungsrechnung), 4.Bar- und Endwerte (mit Begriffen wie vor- und nachschüssig)


Dieses Material ist Teil einer Sammlung

Arbeitsblatt, Bild, Text, Website

Landesarbeitsgemeinschaft Agenda 21 NRW e.V.,

Planspiel "Fläche nutzen statt verbrauchen"

Ziele des Spiels: Das Planspiel soll einen Beitrag leisten, junge Menschen für das Thema Flächenverbrauch zu sensibilisieren und kommunalpolitische Entscheidungsprozesse nachvollziehbar und spannend zu machen. Die Idee des Spiels: Schülerinnen und Schüler konstituieren sich als Rat einer Kommune. Sie bilden Fraktionen, setzen Ausschüsse ein und simulieren als handlungsfähiges Kommunalparlament einen Ratsbeschluss. Als Ratsantrag werden verschiedene Spielszenarien (Elektronikmarkt auf der Grünen Wiese; Baugebiete für familiengerechtes Wohnen; Interkommunales Gewerbegebiet) vorgeschlagen. Diese diskutieren die Schülerinnen und Schüler unter flächenrelevanten und finanzpolitischen Aspekten und stimmen abschließend in einem Ratsbeschluss darüber ab.

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Grundbegriffe und wie man damit rechnet, Beispiel 1 | A.33.02

In den meisten Aufgaben ist die Kostenfunktion eine Gleichung dritten Grades, die Erlösfunktion ist eine Ursprungsgerade. Beide haben zwei Schnittpunkte im positiven Bereich. Zwischen den beiden Schnittpunkten fährt das Unternehmen Gewinn ein, außerhalb der Schnittpunkte macht es Verlust. Die beiden Schnittpunkte heißen dementsprechend Gewinnschwelle (oder Nutzenschwelle) und Gewinngrenze (oder Nutzengrenze).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum berechnen, Beispiel 2 | A.30.05

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Hierbei handelt es sich um den Wert, um welchen der Bestand überhaupt noch zunehmen kann, also um die Differenz zwischen Grenze und aktuellem Bestand.


Dieses Material ist Teil einer Sammlung

Video

Landeszentrale für politische Bildung NRW

Verlieren und Gewinnen

Die Kokerei Kaiserstuhl, bei Dortmund. Eine der modernsten Anlagen ihrer Art. Im Jahr 2000 wird sie stillgelegt, nach nur 8-jähriger Betriebsdauer. Die Kokerei wird nicht zum Industrie-Denkmal - aber auch nicht abgerissen. Ein chinesischer Betrieb aus der Provinz Shandong will das Unmögliche wagen. Sein Vorhaben: Die komplette, riesige Anlage demontieren, nach China transportieren, dort wieder zusammensetzen und in Betrieb nehmen. Der deutsche Betriebselektriker Rainer Kruska von der alten Belegschaft ist skeptisch: Kann das funktionieren? Ein riesiger Trupp an Arbeitskräften des Yangkuan-Konzerns rückt an. Anfangs läuft vieles schief: Es gibt Sprachprobleme, die chinesischen Arbeiter verstoßen fortlaufend gegen deutsche Arbeitsschutzvorschriften, und an Ratschlägen sind sie auch nicht so richtig interessiert. Doch langsam wächst der gegenseitige Respekt. Den Fleiß und die Fachkenntnis der Chinesen wissen die Deutschen bald zu schätzen. An den Deutschen bewundern die Chinesen deren respektvollen Umgang mit Umwelt und Tieren. Es wird deutlich, dass hier kein unterentwickeltes Land Resteverwertung überkommener Technologien betreiben will. Im Gegenteil: Mo Lishi, der chinesische Firmenchef, sieht Europa ganz klar als veraltetes Modell für modernes Wirtschaften. China ist längst auf der Überholspur, da ist er sich sicher. "Nächstes Mal demontieren wir Airbus-Fabriken", kündigt er freundlich lächelnd an. Doch erst geht die Kokerei nach China. Sobald dort die wiederaufgebaute Anlage läuft, sollen fünf weitere Anlagen nach dem gleichen Muster entstehen. Ein lohnendes Projekt - hat doch der Weltmarktpreis für Koks mittlerweile dramatisch angezogen.

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig, Beispiel 3 | A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital “K” nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). “R” ist die regelmäßige Rate die einbezahlt wird, “q” ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein “q”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zinseszinsrechnung: so rechnet man Zinseszins richtig, Beispiel 2 | A.55.01

Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das Anfangskapital, n die Anzahl der Zeiteinheiten (meist Monate oder Jahre) und q ist der sogenannte Wachstumsfaktor, für den gilt: q=1+p/100.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zinseszinsrechnung: so rechnet man Zinseszins richtig | A.55.01

Die Zinseszinsrechnung kennt man bereits von der Prozentrechnung aus der Mittelstufe (siehe auch Kap.A.08). Man wendet sie an, wenn anfangs ein Kapital vorhanden ist und dieses nun über mehrere Jahre/Monate/Tage/... verzinst wird. (Zwischendrin wird also nichts mehr ein- oder ausbezahlt). Die Formel lautet: K(n)=K(0)*q^n. Hierbei ist K(n) das Endkapital, K(0) das Anfangskapital, n die Anzahl der Zeiteinheiten (meist Monate oder Jahre) und q ist der sogenannte Wachstumsfaktor, für den gilt: q=1+p/100.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig, Beispiel 2 | A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man “Barwert” nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann “Endwert” nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft “Zinsfuß” genannt, das gesamte Verfahren; heißt “Methode des internen Zinsfuß” oder “Methode des internen Zinssatzes” oder einfach kurz “IZF” (englisch: “IRR” = “Internal Rate of Return”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 5 | A.30.04

Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl “k” heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum auf.


Dieses Material ist Teil einer Sammlung