Suchergebnis für: ** Zeige Treffer 1 - 10 von 1077

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand zwischen Funktionen berechnen, Beispiel 2 | A.21.06

Die vermutlich häufigste Variante von Extremwertaufgaben ist der Unterschied zwischen zwei Funktionen. Es geht hierbei um den senkrecht gemessenen Abstand zwischen zwei Funktionen. Man zieht dafür die beiden Funktionen von einander ab (man bestimmt also die Differenzfunktion) und bestimmt davon das Maximum oder Minimum.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln an der x-Achse, an der y-Achse oder am Ursprung, Beispiel 4 | A.23.03

Will man eine Funktion spiegeln, so ist ein Minuszeichen entscheidend. Bei einer Achsenspiegelung an der y-Achse, muss man jede Variable “x” der Funktion durch “-x” ersetzt. Man spiegelt eine Funktion an der x-Achse, indem man vor die Funktion ein Minus setzt (aus “f(x)” wird “-f(x)”). Braucht man eine Punktspiegelung von einer Funktion am Ursprung, so erhält man das durch eine Achsenspiegelung an der x-Achse UND einer an der y-Achse (aus “f(x)” wird “-f(-x)”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Formel, Beispiel 4 | A.23.04

Beim Spiegeln von Funktionen an einer senkrechten Gerade der Form x=a, wird in der Funktion f(x) jeder Buchstabe “x” durch “2a-x” ersetzt. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, ist die gesuchte Funktion: g(x)=2b-f(x). Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so entspricht das zwei Achsenspiegelungen: nämlich der Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 4 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 6 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 1 | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen spiegeln über Verschieben, Beispiel 2 | A.23.05

Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um “-a”, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um “a” zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um “-b”, spiegelt dann an der x-Achse und verschiebt danach die Funktion wieder um “b” zurück. Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so muss man zwei Achsenspiegelungen durchführen: nämlich die Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen verschieben: so wird’s gemacht, Beispiel 6 | A.23.01

Wie kann man Funktion verschieben? Bei einer Verschiebung um “a” nach links, ersetzt man in der Funktion jeden Buchstaben “x” durch “x+a”. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man “x” durch “x-a” ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert “b” nach oben oder unten, indem man an die Funktion f(x) diese Zahl dranhängt. Verschieben um “b” nach oben ist somit: “f(x)+b”, Verschieben nach unten ist: “f(x)-b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kurvendiskussion von Kurvenscharen, Beispiel 6 | A.24.02

Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19


Dieses Material ist Teil einer Sammlung