Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Grundbegriffe und wie man damit rechnet, Beispiel 1 | A.33.02

In den meisten Aufgaben ist die Kostenfunktion eine Gleichung dritten Grades, die Erlösfunktion ist eine Ursprungsgerade. Beide haben zwei Schnittpunkte im positiven Bereich. Zwischen den beiden Schnittpunkten fährt das Unternehmen Gewinn ein, außerhalb der Schnittpunkte macht es Verlust. Die beiden Schnittpunkte heißen dementsprechend Gewinnschwelle (oder Nutzenschwelle) und Gewinngrenze (oder Nutzengrenze).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Grundbegriffe und wie man damit rechnet, Beispiel 2 | A.33.02

In den meisten Aufgaben ist die Kostenfunktion eine Gleichung dritten Grades, die Erlösfunktion ist eine Ursprungsgerade. Beide haben zwei Schnittpunkte im positiven Bereich. Zwischen den beiden Schnittpunkten fährt das Unternehmen Gewinn ein, außerhalb der Schnittpunkte macht es Verlust. Die beiden Schnittpunkte heißen dementsprechend Gewinnschwelle (oder Nutzenschwelle) und Gewinngrenze (oder Nutzengrenze).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Fachbegriffe, Beispiel 1 | A.33.03

In der Kostenrechnung gibt es mehrere Begriffe, die für die meisten Leute sehr verwirrend sind. Es geht um Fixkosten, variable Stückkosten, Grenzkosten, Betriebsoptimum, Betriebsminimum, und einiges mehr. Im Großen und Ganzen nicht schwer, jedoch muss man sich die Bedeutung der Begriffe genau einprägen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Fachbegriffe | A.33.03

In der Kostenrechnung gibt es mehrere Begriffe, die für die meisten Leute sehr verwirrend sind. Es geht um Fixkosten, variable Stückkosten, Grenzkosten, Betriebsoptimum, Betriebsminimum, und einiges mehr. Im Großen und Ganzen nicht schwer, jedoch muss man sich die Bedeutung der Begriffe genau einprägen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Grundbegriffe und wie man damit rechnet | A.33.02

In den meisten Aufgaben ist die Kostenfunktion eine Gleichung dritten Grades, die Erlösfunktion ist eine Ursprungsgerade. Beide haben zwei Schnittpunkte im positiven Bereich. Zwischen den beiden Schnittpunkten fährt das Unternehmen Gewinn ein, außerhalb der Schnittpunkte macht es Verlust. Die beiden Schnittpunkte heißen dementsprechend Gewinnschwelle (oder Nutzenschwelle) und Gewinngrenze (oder Nutzengrenze).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Fachbegriffe, Beispiel 2 | A.33.03

In der Kostenrechnung gibt es mehrere Begriffe, die für die meisten Leute sehr verwirrend sind. Es geht um Fixkosten, variable Stückkosten, Grenzkosten, Betriebsoptimum, Betriebsminimum, und einiges mehr. Im Großen und Ganzen nicht schwer, jedoch muss man sich die Bedeutung der Begriffe genau einprägen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Interner Zinsfuß: so berechnet man ihn richtig, Beispiel 1 - A.55.04

Wenn ein Unternehmen einen Kredit für eine Investition aufnimmt, zahlt sich diese erst später aus. Um beides nun vergleichen zu können, muss man die verlorenen (oder gewonnen) Zinsen berücksichtigen, die zwischen den Zeitpunkten liegen. Man kann alle auftretenden Beträge auf den ersten Zeitpunkt runterrechnen (zinstechnisch), was man "Barwert" nennt oder man kann alle Beträge auf den letzten Zeitpunkt hochrechnen, was man dann "Endwert" nennt. Im Normalfall rechnet man alles auf den Anfangszeitpunkt zurück. Der Zinssatz, um den es geht, wird oft "Zinsfuß" genannt, das gesamte Verfahren; heißt "Methode des internen Zinsfuß" oder "Methode des internen Zinssatzes" oder einfach kurz "IZF" (englisch: "IRR" = "Internal Rate of Return").


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Finanzmathematik: kurze Einführung - A.55

Die Finanzmathematik befasst sich natürlich mit der Berechnung von verschiedenen finanzmathematischen Problemen. In diesem Kapitel betrachten wir: 1.Zinseszins-Berechnungen, 2.Rentenrechnung (Ratensparen), 3.Annuitäten-Rechnung (Tilgungsrechnung), 4.Bar- und Endwerte (mit Begriffen wie vor- und nachschüssig)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig, Beispiel 2 | A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital “K” nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). “R” ist die regelmäßige Rate die einbezahlt wird, “q” ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein “q”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum berechnen, Beispiel 2 | A.30.05

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Hierbei handelt es sich um den Wert, um welchen der Bestand überhaupt noch zunehmen kann, also um die Differenz zwischen Grenze und aktuellem Bestand.


Dieses Material ist Teil einer Sammlung