Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 3

Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte Asymptote. Nun setzt man x- und y-Koordinate von irgendeinem gut ablesbaren Punkt ein und erhält so auch noch den Parameter.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: kurze Einführung | A.44

Logarithmusfunktionen erkennt man typischerweise am Logarithmus. Das ist eine gute Erkenntnis. Typisch an der Skizze einer Logarithmusfunktion ist die senkrechte Asymptote, wobei die Funktion jedoch entweder nur links oder nur rechts der Asymptote existiert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion ableiten, Beispiel 2 | A.44.02

Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ableitung von komplizierten Logarithmusfunktionen, Beispiel 3 | A.44.03

Für besonders hässliche Ableitung braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer geht’s immer.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 1 | A.44.04

Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Gleichungen lösen, Beispiel 2 | A.44.05

Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch “x” oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. Normalerweise kann man nun gut nach “x” auflösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 3 | A.44.6

Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: Nullstellen berechnen, Beispiel 3 | A.41.01

Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den “ln” an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an “x” ran.


Dieses Material ist Teil einer Sammlung