Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 3 | A.04.11

Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die Schnittpunkte).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Schnittpunkte zweier Parabeln berechnen | A.04.12

Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt “x²” weg, kann man einfach nach dem verbliebenen “x” auflösen. Bleibt “x²” übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man auch die y-Werte und damit die kompletten Schnittpunkte (bzw. den einen Berührpunkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Tangente an Parabel, Beispiel 1 | A.04.13

Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt “Tangente”. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel kommt Null raus). Wenn tatsächlich nur EINE Lösung für x rauskommt, ist das schon der Beweis, dass die Gerade eine Tangente ist. Der erhaltene x-Wert ist natürlich der x-Wert des Berührpunktes.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Normalparabel und Scheitelpunkt, Beispiel 4 | A.04.14

Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig (“a” ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt | A.04.16

Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch “Steckbriefaufgabe”), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann “a” berechnen. Im Detail: die Scheitelform lautet y=a(x-xs)²+ys. Die Koordinaten des Scheitelpunkts setzt man für “xs” und “ys” ein, die Koordinaten des anderen Punkts setzt man für “x” und “y” ein. Nun erhält man also “a”. Danach “a”, “xs” und “ys” wieder in die Scheitelform ein und ist fertig. Evtl. kann man die Scheitelform noch in die Normalform der Parabel umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsparallele Flächen berechnen, Beispiel 1 - A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsparallele Flächen berechnen, Beispiel 3 - A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 3 - A.03.02

Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der Grundliniensteigung. Zusammen mit den Koordinaten des gegenüberliegenden Eckpunktes kann man die Geradengleichung der Höhe bestimmen. Diese Lotgerade schneidet man mit der Gleichung der Grundlinie (die man natürlich ebenfalls bestimmen muss). Der Schnittpunkt ist der Lotfußpunkt. Der Abstand vom Lotfußpunkt zum gegenüberliegenden Eckpunkt ist die Länge der Höhe.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 2 - A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1 - y1), (x2 - y2) und (x3 - y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Verschieben von Punkten, Beispiel 3 - A.01.03

Punkte verschiebt man ganz einfach, Beim Verschieben nach links oder rechts ändert sich der x-Wert des Punktes, bei Verschiebungen hoch oder runter ändert sich der y-Wert.


Dieses Material ist Teil einer Sammlung