Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Beispielaufgaben zu Ableitungen, Beispiel 6 | A.13.06

Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 4 | A.11.03

Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere Bedeutung. Setzt man f''(x)=0, erhält man den Wendepunkt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Wendetangente und Wendenormale bestimmen, Beispiel 5 | A.15.03

Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 9 | A.12.09

Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema “Nullstellen” bzw. “Gleichungen lösen”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Horner-Schema, Beispiel 4 | A.12.08

Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02

Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 4 | A.18.04

Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die Fläche auf. (Meistens.)


Dieses Material ist Teil einer Sammlung