Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schaubilder von Funktionen: Wurzelfunktion | A.27.01

Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von Logarithmus-Funktionen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen Schaubildern zuordnen, Beispiel 3 | A.27.02

Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Regression mit GTR / CAS berechnen, Beispiel 3 | A.29.01

Folgende Problematik: Man hat beliebig viele Punkte und möchte diejenige Punktion, die am besten reinpasst, also möglichst nahe an allen Punkten vorbeiläuft. GTR oder CAS können solche Funktionen angeben, man nennt das Ganze “Regression” oder “Funktion anpassen/optimieren”... Man muss eigentlich nur die Tastenkombinationen kennen, zu denken gibt’s nicht viel. (Falls Sie weiter recherchieren möchten, probieren Sie die Suchbegriffe “Regression” oder “minimale Summe der quadratischen Entfernung”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 4 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Quadratische Ungleichungen, Beispiel 4 | A.26.02

Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher “x²” vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 1 | A.06.01

“Polynome” heißen auch “ganzrationale Funktionen” oder “Parabeln höherer Ordnung”. Während man unter “Parabel” normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer “Parabel dritten Grades” bzw. “Parabel dritter Ordnung” eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit “Parabel vierter Ordnung” ist eine Funktion gemeint, in welcher x^4 als höchste Potenz auftaucht, usw. Anfangs, wenn diese Funktionen eingeführt werden, interessiert man sich hauptsächlich dafür, woher die Funktion kommt und wohin sie geht. Man lässt also x gegen plus und gegen minus Unendlich laufen und schaut ob die y-Werte nach plus oder minus Unendlich gehen. (Wenn man's mal kapiert hat isses ganz einfach).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel mit Parameter berechnen | A.04.19

Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum “x” noch ein “t” oder “k” oder …), so spricht man von einer “Parabelschar” (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man “Scharparabel” (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach “x” auflösen), irgendeine Punktprobe (man setzt also die Koordinaten von irgendeinem gegebenen Punkt ein und muss nach “t” auflösen), und ähnliches Zeug. Oft steckt der Parameter in der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) unter der Wurzel und man muss entscheiden, ob es für die Fragestellung aus der Aufgabe keine/eine/zwei Lösungen gibt. Die Antwort hängt davon ab, was unter der Wurzel steht (das unter der Wurzel nennt man “Diskriminante”). Ist die Diskriminante positiv gibt es zwei Lösungen, ist sie negativ gibt es keine Lösung, ist sie genau Null so hat man eine Lösung. Gewöhnungsbedürftig, aber machbar.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Funktion, kubische Parabel ableiten | A.05.02

Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach “x” auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von “x” kommt vor, die neue Hochzahl wird eins kleiner. Z.B. wird aus 4x³ beim Ableiten: 4*3x²=12x².


Dieses Material ist Teil einer Sammlung