Video

Havonix Schulmedien-Verlag

Brüche dividieren bzw. Brüche teilen: so geht die Division von Brüchen richtig | B.02.05

Will man zwei Brüche dividieren, braucht man den Kehrbruch (Dividieren heißt “Geteilt rechnen”). Die Situation ist also Folgende: Sie haben einen Bruch und möchten diesen Bruch durch einen zweiten Bruch teilen. Dann lassen Sie den ersten Bruch einfach stehen und multiplizieren mit dem Kehrwert des zweiten Bruchs (das heißt, dass Sie Zähler und Nenner vom zweiten Bruch miteinander vertauschen). Jetzt multipliziert man einfach die beiden Brüche. Wenn Sie einen Doppelbruch haben, ist das nicht Anderes als eine Division von zwei Brüchen. Sie schauen also zuerst nach dem Hauptbruchstrich (also welches ist der längste Bruchstrich). Alles was oben steht, bleibt unverändert stehen und wird mit dem Kehrwert vom unteren Bruch multipliziert


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 1 | B.02.04

Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt “Mal rechnen”). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler und ein Nenner, entweder Zähler und Nenner vom gleichen Bruch oder Zähler vom einen und Nenner vom anderen Bruch.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche addieren, Brüche subtrahieren, Beispiel 6 | B.02.03

Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle Zählen addiert bzw. subtrahiert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche addieren, Brüche subtrahieren, Beispiel 1 | B.02.03

Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle Zählen addiert bzw. subtrahiert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche erweitern: so erweitert man einen Bruch, Beispiel 3 | B.02.02

Um einen Bruch zu erweitern, muss man Zähler und Nenner (oben und unten) mit der gleichen Zahl multiplizieren. Meist braucht man diese Rechenregel (zum Brüche erweitern) für den Hauptnenner von Brüchen, z.B. beim Addieren von Brüchen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche kürzen: so kürzt man einen Bruch, Beispiel 5 | B.02.01

Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 1 | A.43.02

Die Ableitung eines Bruchs geht mit der sogenannten “Quotientenregel”. Der Zähler (oben) wird “u” genannt, der Nenner (unten) wird “v” genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen integrieren bzw. aufleiten, Beispiel 1 | A.43.04

Es gibt drei Typen von gebrochen-rationalen Funktionen, die man verhältnismäßig einfach integrieren kann. 1.Funktionen, die im Nenner (unten) kein “+” oder “-” haben. Diese Funktionen kann man aufspalten und dann recht einfach integrieren. 2. Funktionen, die oben nur eine Zahl haben, unten eine Klammer ohne Hochzahl. Die Stammfunktion wird führt man auf den Logarithmus (auf ln(..)) zurück. 3. Funktionen, die oben nur eine Zahl haben, unten eine Klammer mit Hochzahl. Man schreibt die Funktion um, den Nenner schreibt man hoch, in dem die Hochzahl negativ wird. Nun kann man die Funktion integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 2 | A.43.06

Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass man die größten Hochzahlen von Zähler und Nenner vergleicht und dabei vier Fälle unterscheidet. Schiefe Asymptoten betrachten wir im nächsten Unterkapitel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 4 | A.43.06

Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass man die größten Hochzahlen von Zähler und Nenner vergleicht und dabei vier Fälle unterscheidet. Schiefe Asymptoten betrachten wir im nächsten Unterkapitel.


Dieses Material ist Teil einer Sammlung