Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Logistisches Wachstum berechnen | A.30.07

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Für die Funktionsgleichung vom logistischen Wachstum gibt es leider recht viele Möglichkeiten. f(t)=b/(c+e^(-k*G*t)) oder f(t)=(a*G)/(a+(G-a)*e^(-k*G*t)). Wir werden hier mit der zweiten Variante rechnen, da in dieser Variante alle Parameter eine Bedeutung haben: a=Anfangswert, G=Grenze, k=Wachstumskonstante.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2b: Hoch-/ Tiefpunkt berechnen

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2d: Tangente berechnen

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 2 - A.06.01

"Polynome" heißen auch "ganzrationale Funktionen" oder "Parabeln höherer Ordnung". Während man unter "Parabel" normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer "Parabel dritten Grades" bzw. "Parabel dritter Ordnung" eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit "Parabel vierter Ordnung" ist eine Funktion gemeint, in welcher x^4 als höchste Potenz auftaucht, usw. Anfangs, wenn diese Funktionen eingeführt werden, interessiert man sich hauptsächlich dafür, woher die Funktion kommt und wohin sie geht. Man lässt also x gegen plus und gegen minus Unendlich laufen und schaut ob die y-Werte nach plus oder minus Unendlich gehen. (Wenn man's mal kapiert hat isses ganz einfach).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Hyperbel / Hyperbeln berechnen, Beispiel 4 | A.06.02

Eine Funktion, die im Nenner (unten) eines Bruchs ein “x” stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind “1/x”, “1/x²”,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer senkrechten Gerade an (oft x- und y-Achse). Diese Geraden heißen dann Asymptoten. Sie müssen in der Lage sein, diese Asymptoten heraus zu finden (ob Sie dabei den Begriff “Asymptoten” verwenden, ist unwichtig) und Sie sollten die Funktionen grob skizzieren können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 2 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 5 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Lineares Wachstum berechnen, Beispiel 2 | A.07.01

Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben “y=m*x+b”, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t” und “m” ist die Menge die pro Zeiteinheit konstant dazu kommt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beschränktes Wachstum berechnen, Beispiel 1 | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Logistisches Wachstum berechnen, Beispiel 1 | A.07.04

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Die Berechnung von logistischem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*B(t)*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.07]) .


Dieses Material ist Teil einer Sammlung