Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 3 - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand Punkt-Funktion mit GTR / CAS berechnen, Beispiel 3 | A.21.08

Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt den Abstand des Punktes P zum beliebigen Punkt P(u|f(u)) mit Hilfe der Abstandsformel auf und erhält den Abstand in Abhängigkeit vom Parameter u. Diesen Abstand gibt man als Funktion in den GTR/CAS ein und bestimmt das Minimum. (Abstand Punkt Funktion sieht man in den letzten Jahren häufiger).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand Punkt-Funktion mit GTR / CAS berechnen, Beispiel 2 | A.21.08

Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt den Abstand des Punktes P zum beliebigen Punkt P(u|f(u)) mit Hilfe der Abstandsformel auf und erhält den Abstand in Abhängigkeit vom Parameter u. Diesen Abstand gibt man als Funktion in den GTR/CAS ein und bestimmt das Minimum. (Abstand Punkt Funktion sieht man in den letzten Jahren häufiger).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zeiten umrechnen mit dem Taschenrechner, Beispiel 5 - B.07.03

Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 Tage+0,54321*24Stunden = 6 Tage + 13,03704 Stunden. Nun kann man die Kommazahl der Stunden mit 60 multiplizieren um auf Minuten zu kommen, usw.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zeiten umrechnen mit dem Taschenrechner, Beispiel 3 - B.07.03

Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 Tage+0,54321*24Stunden = 6 Tage + 13,03704 Stunden. Nun kann man die Kommazahl der Stunden mit 60 multiplizieren um auf Minuten zu kommen, usw.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 2 - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Zeiten umrechnen mit dem Taschenrechner, Beispiel 1 - B.07.03

Nicht überall gibt es das Dezimalsystem. Vor allem in der Zeitrechnung gibt es häufig Probleme bei der Umrechnung, gerade wenn Kommazahlen auftreten. z.B.: Wieviel Stunden, Minuten und Sekunden sind 6,54321 Tage? Um diese Zeitumrechnung durchzuführen, nimmt man die Kommazahl (0,54321) und multipliziert diese mit der Anzahl der Stunden, die der Tag hat == 6,54321 Tage = 6 Tage+0,54321*24Stunden = 6 Tage + 13,03704 Stunden. Nun kann man die Kommazahl der Stunden mit 60 multiplizieren um auf Minuten zu kommen, usw.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen - B.07.02

Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen Buchstaben angegeben, so sollte der Taschenrechner auf Grad gestellt werden. Ist der Winkel mit "x" angegeben, braucht man die Einstellung auf Radianten)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand Punkt-Funktion mit GTR / CAS berechnen | A.21.08

Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt den Abstand des Punktes P zum beliebigen Punkt P(u|f(u)) mit Hilfe der Abstandsformel auf und erhält den Abstand in Abhängigkeit vom Parameter u. Diesen Abstand gibt man als Funktion in den GTR/CAS ein und bestimmt das Minimum. (Abstand Punkt Funktion sieht man in den letzten Jahren häufiger).


Dieses Material ist Teil einer Sammlung

Video

Mathe Seite

Basisumformungen - Grundlagenrechnen

Potenzregeln, Wurzeln, Ausklammern, binomische Formel, … wer kann das alles noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier sämtliche Grundlagen.


Dieses Material ist Teil einer Sammlung