Video

Havonix Schulmedien-Verlag

Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 1 | B.03.04

Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert | B.03.03

Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche dividieren bzw. Brüche teilen: so geht Division von Brüchen richtig, Beispiel 5 | B.02.05

Will man zwei Brüche dividieren, braucht man den Kehrbruch (Dividieren heißt “Geteilt rechnen”). Die Situation ist also Folgende: Sie haben einen Bruch und möchten diesen Bruch durch einen zweiten Bruch teilen. Dann lassen Sie den ersten Bruch einfach stehen und multiplizieren mit dem Kehrwert des zweiten Bruchs (das heißt, dass Sie Zähler und Nenner vom zweiten Bruch miteinander vertauschen). Jetzt multipliziert man einfach die beiden Brüche. Wenn Sie einen Doppelbruch haben, ist das nicht Anderes als eine Division von zwei Brüchen. Sie schauen also zuerst nach dem Hauptbruchstrich (also welches ist der längste Bruchstrich). Alles was oben steht, bleibt unverändert stehen und wird mit dem Kehrwert vom unteren Bruch multipliziert


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche dividieren bzw. Brüche teilen: so geht Division von Brüchen richtig, Beispiel 3 | B.02.05

Will man zwei Brüche dividieren, braucht man den Kehrbruch (Dividieren heißt “Geteilt rechnen”). Die Situation ist also Folgende: Sie haben einen Bruch und möchten diesen Bruch durch einen zweiten Bruch teilen. Dann lassen Sie den ersten Bruch einfach stehen und multiplizieren mit dem Kehrwert des zweiten Bruchs (das heißt, dass Sie Zähler und Nenner vom zweiten Bruch miteinander vertauschen). Jetzt multipliziert man einfach die beiden Brüche. Wenn Sie einen Doppelbruch haben, ist das nicht Anderes als eine Division von zwei Brüchen. Sie schauen also zuerst nach dem Hauptbruchstrich (also welches ist der längste Bruchstrich). Alles was oben steht, bleibt unverändert stehen und wird mit dem Kehrwert vom unteren Bruch multipliziert


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche multiplizieren: so geht die Multiplikation von Brüchen richtig, Beispiel 4 | B.02.04

Will man Zwei oder mehrere Brüche multiplizieren, ist das Einfachste der Welt (Multiplizieren heißt “Mal rechnen”). Man multipliziert Zähler mit Zähler und Nenner mit Nenner. Man braucht also keinen Hauptnenner oder sonst irgendwas. Man macht sich das Leben jedoch einfacher, wenn man VORHER kürzt (sofern das natürlich geht). Gekürzt wird natürlich immer ein Zähler und ein Nenner, entweder Zähler und Nenner vom gleichen Bruch oder Zähler vom einen und Nenner vom anderen Bruch.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche addieren, Brüche subtrahieren, Beispiel 4 | B.02.03

Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle Zählen addiert bzw. subtrahiert.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche erweitern: so erweitert man einen Bruch, Beispiel 8 | B.02.02

Um einen Bruch zu erweitern, muss man Zähler und Nenner (oben und unten) mit der gleichen Zahl multiplizieren. Meist braucht man diese Rechenregel (zum Brüche erweitern) für den Hauptnenner von Brüchen, z.B. beim Addieren von Brüchen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche erweitern: so erweitert man einen Bruch, Beispiel 6 | B.02.02

Um einen Bruch zu erweitern, muss man Zähler und Nenner (oben und unten) mit der gleichen Zahl multiplizieren. Meist braucht man diese Rechenregel (zum Brüche erweitern) für den Hauptnenner von Brüchen, z.B. beim Addieren von Brüchen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Brüche erweitern: so erweitert man einen Bruch, Beispiel 1 - B.02.02

Um einen Bruch zu erweitern, muss man Zähler und Nenner (oben und unten) mit der gleichen Zahl multiplizieren. Meist braucht man diese Rechenregel (zum Brüche erweitern) für den Hauptnenner von Brüchen, z.B. beim Addieren von Brüchen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So kann man einen schwierigen Logarithmus berechnen, Beispiel 3 - B.06.04

Für besonders hässliche Logarithmenaufgaben braucht man Logarithmenregeln, Potenzregeln, binomische Formeln, ein dreihöckriges Kamel und sonst noch ein paar Tricks.


Dieses Material ist Teil einer Sammlung