Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Trapezregel Flächeninhalt bestimmen | A.32.05

Die Sehnen-Trapez-Regel (oder Trapezregel)ist ein Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Die Sehnen-Trapezformel liefert im Normalfall bessere Ergebnisse als die Keplerschen Fassregel (siehe Kap.2.12.4), dafür ist sie jedoch nicht so schnell und supereinfach. Trotzdem ist die Sehnentrapezregel nicht schwer zu verstehen. Eigentlich setzt man nur x- und y-Werte in eine Formel ein. (Die Sehnen-Trapez-Regel funktioniert damit ähnlich wie die Simpson-Regel oder die Tangenten-Trapez-Regel und liefert auch ähnlich gute Ergebnisse. [Die letzten beiden Methoden gibt’s jedoch nicht auf der Mathe-Seite]).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Trapezregel Flächeninhalt bestimmen, Beispiel 2 | A.32.05

Die Sehnen-Trapez-Regel (oder Trapezregel)ist ein Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Die Sehnen-Trapezformel liefert im Normalfall bessere Ergebnisse als die Keplerschen Fassregel (siehe Kap.2.12.4), dafür ist sie jedoch nicht so schnell und supereinfach. Trotzdem ist die Sehnentrapezregel nicht schwer zu verstehen. Eigentlich setzt man nur x- und y-Werte in eine Formel ein. (Die Sehnen-Trapez-Regel funktioniert damit ähnlich wie die Simpson-Regel oder die Tangenten-Trapez-Regel und liefert auch ähnlich gute Ergebnisse. [Die letzten beiden Methoden gibt’s jedoch nicht auf der Mathe-Seite]).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Trapezregel Flächeninhalt bestimmen, Beispiel 3 | A.32.05

Die Sehnen-Trapez-Regel (oder Trapezregel)ist ein Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Die Sehnen-Trapezformel liefert im Normalfall bessere Ergebnisse als die Keplerschen Fassregel (siehe Kap.2.12.4), dafür ist sie jedoch nicht so schnell und supereinfach. Trotzdem ist die Sehnentrapezregel nicht schwer zu verstehen. Eigentlich setzt man nur x- und y-Werte in eine Formel ein. (Die Sehnen-Trapez-Regel funktioniert damit ähnlich wie die Simpson-Regel oder die Tangenten-Trapez-Regel und liefert auch ähnlich gute Ergebnisse. [Die letzten beiden Methoden gibt’s jedoch nicht auf der Mathe-Seite]).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit Trapezregel Flächeninhalt bestimmen, Beispiel 1 | A.32.05

Die Sehnen-Trapez-Regel (oder Trapezregel)ist ein Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Die Sehnen-Trapezformel liefert im Normalfall bessere Ergebnisse als die Keplerschen Fassregel (siehe Kap.2.12.4), dafür ist sie jedoch nicht so schnell und supereinfach. Trotzdem ist die Sehnentrapezregel nicht schwer zu verstehen. Eigentlich setzt man nur x- und y-Werte in eine Formel ein. (Die Sehnen-Trapez-Regel funktioniert damit ähnlich wie die Simpson-Regel oder die Tangenten-Trapez-Regel und liefert auch ähnlich gute Ergebnisse. [Die letzten beiden Methoden gibt’s jedoch nicht auf der Mathe-Seite]).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Polynom bzw. ganzrationale Funktion ableiten | A.13.01

Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das “x”, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Polynom bzw. ganzrationale Funktion ableiten, Beispiel 5 | A.13.01

Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das “x”, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 3

Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wendetangente und Wendenormale bestimmen, Beispiel 1 | A.15.03

Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wendetangente und Wendenormale bestimmen, Beispiel 3 | A.15.03

Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 1 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.