Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 3 | A.43.10

Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer Logarithmusfunktion erstellen, Beispiel 1 | A.44.07

ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse, Beispiel 3 | A.44.09

Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 1 | A.45.05

Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach “x” auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ganzrationale Funktionen: kurze Einführung | A.46

Den Hauptteil von ganzrationalen Funktionen (=Parabeln) haben wir ersten Themenbereich behandelt “Analysis 1”. In diesem Hauptkapitel behandeln wir nur ein paar Besonderheiten davon. Wir stellen Polynome über diverse Bedingungen auf, zerlegen sie in Linearfaktoren, bestimmen Nullstellen über Polynomdivision oder Horner-Schema.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 1 | A.46.01

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die Gleichung durch (x-Nullstelle) teilen. Das Ergebnis ist ein einfacheres Polynom, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 2 | A.46.02

Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein festgelegtes Verfahren anwenden um im Ergebnis ein einfacheres Polynom zu erhalten, welches man nun erneut auf Nullstellen untersucht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Polynome über Nullstellen aufstellen | A.46.04

Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, …), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter “a” erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer ganzrationalen Funktion erstellen, Beispiel 2 | A.46.06

Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als Notlösung in Frage. Sie werden hauptsächlich Fall 2) begegnen. Auch wir werden uns in diesem Unterkapitel dem Fall 2) widmen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 3

Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über Bedingungen aufstellen (siehe Kap.3.6.5).