Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 1 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 3

Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als “hebbare Lücke” (ein “Loch” in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren (d.h. Ausklammern, bin. Formeln oder Linearfaktorzerlegung [Kap.?B.05]). 2. Man bestimmt die Definitionsmenge, (das sind die Nennernullstellen). 3. Kürzen, was sich kürzen lässt. 4. Die Nennernullstellen, die jetzt noch übrig bleiben, sind die senkrechten Asymptoten, die anderen Zahlen, die zwar in der Definitionsmenge auftauchen, jedoch keine senkr. Asymptoten sind, sind die hebbaren Lücken bzw. die Löcher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 2 - A.54.03

Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. Hat man a und b gegeben gilt: r=Wurzel(a^2+b^2), phi=arctan(b/a). Hat man r und phi gegeben gilt: a=r*cos(phi) und b=r*sin(phi).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 2 | A.53.04

Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ab: 1. ist die Lösung des charakteristischen Polynoms reell oder komplex? und 2. ist die Lösung einfach, doppelt, dreifach...


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: So leitet man vermischte Funktionen ab, Beispiel 8 | A.13.07

In den bisherigen Kapiteln haben wir hauptsächlich Polynome (“normale” Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Polynomdivision, Beispiel 1 | A.12.07

Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 11 | A.12.09

Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema “Nullstellen” bzw. “Gleichungen lösen”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Abstand Punkt-Funktion berechnen | A.21.07

Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten Aufgaben).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Abstand Punkt-Funktion berechnen, Beispiel 2 | A.21.07

Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten Aufgaben).


Dieses Material ist Teil einer Sammlung