Video

Havonix Schulmedien-Verlag

Mit L'Hospital Grenzwerte bestimmen, Beispiel 7 - A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Mit L'Hospital Grenzwerte bestimmen, Beispiel 2 | A.52.02

L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Krümmungsradius und Bogenlänge einer Kurve bestimmen, Beispiel 1 | A.11.08

Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man “hässlich” auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze doch recht human.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente bestimmen über Tangentensteigung, Beispiel 1 | A.15.01

Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält “b”. Für die fertige Geradengleichung der Tangente setzt man “m” und “b” wieder in y=m*x+b ein.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 4 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente außerhalb, Beispiel 6 | A.15.04

Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten (“u”). Nun löst man die Gleichung nach “u” auf (welches der x-Wert des Berührpunktes ist). Nun hat man den Berührpunkt (oder mehrere) und kann ggf. in diesen Punkten wieder die Tangenten aufstellen.


Dieses Material ist Teil einer Sammlung