Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Lineares Wachstum berechnen, Beispiel 3 | A.07.01

Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben “y=m*x+b”, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t” und “m” ist die Menge die pro Zeiteinheit konstant dazu kommt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Beschränktes Wachstum berechnen, Beispiel 2 | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Logistisches Wachstum berechnen, Beispiel 2 | A.07.04

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Die Berechnung von logistischem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*B(t)*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.07]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineares Wachstum berechnen | A.30.01

Das lineare Wachstum ist sehr, sehr einfach. Es handelt sich hierbei einen Bestand mit einer gleichmäßigen Entwicklung, es kommt also in jeder Zeitspanne immer die gleiche Menge dazu (oder geht weg). Das lineare Wachstum wird durch eine Gerade beschrieben, der Ansatz lautet also: B(t)=m*t+b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineares Wachstum berechnen, Beispiel 1 | A.07.01

Lineares Wachstum kennzeichnet sich dadurch, dass immer die gleiche Menge dazu kommt (z.B. kriegt Karlchen jeden Tag 50Cent dazu). Es wird durch eine Gerade beschriebe, bloß verwendet man nicht die Buchstaben “y=m*x+b”, sondern es werden andere Buchstaben verwendet. Gängig ist B(t)=B(0)+m*t. Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t” und “m” ist die Menge die pro Zeiteinheit konstant dazu kommt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Beschränktes Wachstum berechnen | A.07.03

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Logistisches Wachstum berechnen | A.07.04

Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Die Berechnung von logistischem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*B(t)*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.07]) .


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineares Wachstum berechnen, Beispiel 1 | A.30.01

Das lineare Wachstum ist sehr, sehr einfach. Es handelt sich hierbei einen Bestand mit einer gleichmäßigen Entwicklung, es kommt also in jeder Zeitspanne immer die gleiche Menge dazu (oder geht weg). Das lineare Wachstum wird durch eine Gerade beschrieben, der Ansatz lautet also: B(t)=m*t+b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wachstum berechnen | A.07

Es gibt in der Mathematik unendlich viele Wachstumssorten. Vier davon sind so wichtig, dass sie einen Namen erhalten haben: 1. Das lineare Wachstum, 2. Das exponentielle Wachstum, 3. Das begrenzte Wachstum (heißt auch beschränktes Wachstum) und 4. Das logistische Wachstum. Es gibt zwei Möglichkeiten, Wachstumsprozesse zu berechnen. Die einfachste (wenn auch umständlichste) Methode verwendet man in der Schule, so ca. 9., 10. Klasse. Die anderen Methoden (die man in der Oberstufe oder im Studium rechnet), sind in Kapitel A.30 zu finden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen | A.07.02

Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*b^x beschrieben (Hierbei ist “B(0)” der Anfangswert, “B(t)” der Bestand nach Ablauf der Zeit “t”, q ist der sogenannte Wachstumsfaktor, der sich aus der prozentualen Zu-/Abnahme berechnet). Manchmal werden auch andere Buchstaben verwendet. y=a*b^x ist ebenfalls gängig. Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend). Exponentielles Wachstum lässt den Bestand entweder unendlich groß werden (exponentiell zunehmend) oder gegen Null gehen (exponentiell abnehmend).


Dieses Material ist Teil einer Sammlung