Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Zweite Lösung einer trigonometrischen Gleichung bestimmen, Beispiel 2 | A.42.03

Wenn man eine Gleichung in der Trigonometrie von Hand lösen muss (bzw. mit einem einfachen Taschenrechner), steht man normalerweise irgendwann mal vor dem Problem, dass der Taschenrechner einem eine einzige Lösung liefert. Tatsächlich gibt es jedoch normalerweise schon innerhalb einer einzigen Periode zwei Lösungen. Wie kommt man auf die zweite Lösung? 1.Zuerst löst man nach sin(...) oder cos(...) auf. 2.Man substituiert das Argument (d.h. Man wendet Substitution an, in dem man das Innere der Klammer “u” nennt). 3.Man bestimmt mittels Taschenrechner oder Wertetabelle einen Wert von “u”. 4.(Der entscheidende Schritt) Bei sin: die zweite Lösung lautet: u2=Pi-u1. Bei cos: u2=-u1. 5.Man resubstituiert, um aus “u1” und “u2” die Werte “x1” und “x2” zu erhalten. 6.erhaltenen x-Werte kann man beliebig oft um je eine Periode nach links oder rechts verschieben (falls das notwendig ist).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte trigonometrische Funktion ableiten, Beispiel 1 | A.42.05

Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 1 | A.42.06

Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die “umgekehrte Kettenregel” bzw. “lineare Substitution” an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte trigonometrischen Funktionen integrieren, Beispiel 3 | A.42.07

Braucht man die Stammfunktion von besonders hässliche trigonometrischen Funktionen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer trigonometrischen Funktion erstellen, Beispiel 1 | A.42.09

Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion “beginnt”. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit die Funktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer trigonometrischen Funktion erstellen, Beispiel 3 | A.42.09

Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion “beginnt”. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit die Funktion skizzieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse einer trigonometrischen Funktion | A.42.11

Ein paar Beispiele von Funktionsuntersuchungen von trigonometrischen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Periode der Funktion und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 3 | A.43.01

Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 2 | A.43.10

Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).


Dieses Material ist Teil einer Sammlung