Suchergebnis für: ** Zeige Treffer 1 - 10 von 1078

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 1a | A.29.2

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 2f | A.29.03

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man braucht: Nullstellen, Hoch- Tiefpunkte, eine Tangente, desweiteren taucht auf: ein Parallelogramm, eine Extremwertaufgabe und ein kleiner Frosch. Der Sinn ist auch hier alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3f | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 4d | A.29.05

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr “erstes Mal”. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine Funktionsanpassung, Hauptproblematik ist die Berechnung des Volumens in mehreren Varianten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen, Beispiel 5 | A.30.03

Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die Verdopplungszeit (bei exponentieller Zunahme) bzw. die Halbwertszeit (bei exponentielles Abnahme). Egal wann man mit der Messung beginnt, es dauert bei jedem Vorgang immer gleich lang, bis sich der Bestand verdoppelt (bzw. halbiert) hat. Exponentielles Wachstum wird durch die Funktionsgleichung f(t)=a*e^(kt) beschrieben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: So leitet man vermischte Funktionen ab, Beispiel 1 | A.13.07

In den bisherigen Kapiteln haben wir hauptsächlich Polynome (“normale” Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Wurzel integrieren; Brüche integrieren, Beispiel 2 | A.14.02

Viele Wurzeln und Brüche kann man so umschreiben, so dass die Ableitung wesentlich einfacher wird. Brüche: Wenn oben im Zähler kein “x” steht, sondern nur Zahlen und unten im Nenner weder “+” noch “-”, kann man “x” von unten aus dem Nenner hoch in den Zähler bringen, indem man das Vorzeichen der Hochzahl wechselt. Wurzeln: man schreibt die Wurzel um, und zwar in Klammer hoch 0,5. Dritte Wurzeln werden zu “x” hoch “ein Drittel”,...


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Wurzel ableiten; Brüche ableiten, Beispiel 4 | A.13.02

Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein “x” steht, sondern nur Zahlen und unten weder “+” noch “-”, kann man “x” von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu “x” hoch “ein Drittel”,...)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 2 | A.13.05

Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein “x” steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v-u*v')/u132


Dieses Material ist Teil einer Sammlung