Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkte und wie man mit ihnen rechnet | A.01

Egal, ob man Punkte, Geraden, Funktionen oder was auch immer im Koordinatensystem gegeben hat. Wenn man die irgendwie abändern will (spiegeln, verschieben, Abstände berechnen will, …) führt man das ganz häufig auf Theorien zurück, die man von Koordinaten von Punkten kennt. In diesem Kapitel berechnen wir Mittelpunkte, Steigungen, Abstände zwischen zwei Punkten und Spiegelpunkte.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 1 | A.01.02

Die Steigung (heißt auch “Anstieg”) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2-y1)/(x2-x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 1 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittwinkel von Geraden berechnen, Beispiel 1 | A.02.16

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet “tan(alpha)=(m2-m1)/(1+m1*m2)”. Hierbei sind “m1” und “m2” die Steigungen der beiden Geraden. Man setzt “m1” und “m2” in die Formel ein und erhält den Schnittwinkel “alpha”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geraden einzeichnen, Beispiel 1 | A.02.01

Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit “b”, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). “m” ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins nach rechts und dann so viel hoch, wie der Wert der Steigung ist. (bei negativer Steigung geht man dementsprechend runter). Beides verbinden und die Gerade zeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geraden einzeichnen, Beispiel 3 | A.02.01

Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit “b”, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). “m” ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins nach rechts und dann so viel hoch, wie der Wert der Steigung ist. (bei negativer Steigung geht man dementsprechend runter). Beides verbinden und die Gerade zeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geraden auslesen; Geradengleichung | A.02.02

Die Gleichung einer gezeichneten Gerade auszulesen ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Eine Geradengleichung hat die Form: y=m*x+b. Man muss erst den Schnittpunkt der Gerade mit der y-Achse ablesen, das ist “b” (der y-Achsenabschnitt). Danach liest man die Steigung der Gerade ab indem man an irgendeinem beliebigen Punkt der gezeichneten Gerade beginnt, von hier aus 1 nach rechts geht und dann zählt wie viel man hoch oder runter geht um wieder auf die Gerade zu treffen. Der Wert den man hoch/runter gehen musste ist “m” (die Steigung).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geradengleichung aus P und m über Normalform bestimmen | A.02.08

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für “m” und die Koordinaten des Punktes für “x” und “y” in die Gleichung “y=m*x+b” einsetzen um “b” zu bestimmen. Nun setzt man die Werte für “m” und “b” wieder ein und hat die Geradengleichung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Geradengleichung aus P und m über Normalform bestimmen, Beispiel 7 | A.02.08

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre: die Steigung für “m” und die Koordinaten des Punktes für “x” und “y” in die Gleichung “y=m*x+b” einsetzen um “b” zu bestimmen. Nun setzt man die Werte für “m” und “b” wieder ein und hat die Geradengleichung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Schnittwinkel mit Schnittwinkel-Formel berechnen, Beispiel 2 | A.22.03

Beim Schnittwinkel ist es wie immer im Leben: kaum scheint etwas einfach, hat´s auch schon blöde Seiten. Also: es gibt natürlich auch eine recht einfache Methode, den Schnittwinkel zwischen zwei Funktionen zu berechnen, leider ist die Formel dazu etwas hässlich. Zuerst berechnet man den Schnittpunkt beider Funktionen (falls man ihn nicht schon hat). Danach berechnet man die Steigungen beider Funktionen in diesem Punkt (über die erste Ableitung). Danach kann man den Winkel alpha mit der Schnittwinkelformel bestimmen: tan(alpha)=(m2-m1)/(1+m1*m2).


Dieses Material ist Teil einer Sammlung