Bild

Siemens Stiftung

Energieträger Wind

Foto: Die Wirkung des Energieträgers Wind dargestellt durch einen Windsack.Wind ist die Bewegung von Luftmassen als Folge von Temperaturschwankungen und den daraus resultierenden Druckunterschieden in der Atmosphäre. Sonneneinstrahlung und Erdrotation sind dafür die treibenden Mechanismen. Wind tritt in unterschiedlicher Stärke von der Böe bis zum Wirbelsturm auf. Die Nutzung der Windenergie geht weit in die Menschheitsgeschichte zurück - in Form von Segelschiffen (3.500 v. Chr.) und Windmühlen (1.700 v. Chr.). Wind gehört heute zu den am effektivsten genutzten regenerativen und kohlendioxidfreien Energieträgern. Das Foto zeigt einen Windsack, der zur Windmessung an Land genutzt wird.Hinweise und Ideen:Das Foto eignet sich dazu, dem regenerativen Energieträger Wind ein optisches Erscheinungsbild zu geben, und ist als Einstieg oder Veranschaulichung einsetzbar. Informationen zur Nutzung der Windkraft sind z. B. im Infomodul “So funktioniert ein Windkraftwerk” und in der Grafik “Windrad - Querschnitt” enthalten.


Bild

Siemens Stiftung

Was sind regenerative Energieträger?

Grafik und Diagramm:Die Definition des Begriffs “regenerative Energieträger” wird visualisiert.Per definitionem versteht man unter einem regenerativen Energieträger entweder einen nachwachsenden Energieträger - die Biomasse - oder einen nach menschlichem Ermessen unerschöpflichen Energieträger (wie die Sonne oder die Geothermie). Da Wind- und Wasserkraft durch den Einfluss der Sonne bedingt sind, werden auch sie zu den unerschöpflichen Energieträgern gezählt. Hinweise und Ideen:Das Medium eignet sich sehr gut als Einstieg in das Thema “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger regenerativ

Übersichtsgrafik: Abbildung der regenerativen Energieträger Sonne, Wind, Wasser, Erdwärme und Biomasse mit je einer exemplarischen Kraftwerkslösung.Regenerative Energien sind nach menschlichen Maßstäben unerschöpflich, da sie sich sozusagen von selbst erneuern. Sie stellen aufgrund ihrer deutlich geringeren Werte bei der Kohlendioxidemission eine Alternative zu fossilen Energieträgern dar. Jeder regenerative Energieträger wird mit einer spezifischen Nutzung in Kraftwerken kombiniert dargestellt: Energieträger Sonne und Solarthermieanlage, Energieträger Wind und Windrad, Energieträger Wasser und Flusskraftwerk, Energieträger Erdwärme und Geothermiekraftwerk, Energieträger Biomasse und Biomassekraftwerk.Hinweise und Ideen:Die Schülerinnen und Schüler erhalten mit dem Schaubild einen Überblick über regenerative Energieträger. Gleichzeitig wird eine Verbindung zu den Energieumwandlungstechnologien hergestellt. Das Schaubild kann als Einstieg in das Thema regenerative Energien und gleichzeitig als Ausgangspunkt für eine Auseinandersetzung mit Energiequellen, Energieumwandlern sowie Umwelt und Ökologie dienen. Ausführliche Informationen findet man im Leitfaden “Regenerative Energien”.

Bild

Siemens Stiftung

Geothermieanlage

Foto: Die abgebildete Geothermieanlage deckt den gesamten Heizungsbedarf des Wohn- und Gewerbegebiets im Stadtteil München Freiham ab.Aus einer Förderbohrung wird 90 °C heißes Tiefenwasser gepumpt. Die Wärme dieses aus 2.500 m Tiefe geförderten Tiefenwassers wird über einen Wärmeaustauscher ins Fernwärmenetz übertragen. Sodann wird das abgekühlte Wasser über eine Injektionsbohrung zurück in die Tiefe gepumpt. Die dadurch erreichte Einsparung fossiler Brennstoffe entspricht einer Emission von 22.500 t Kohlendioxid jährlich. Die abgebildete Anlage enthält außer den Pumpen und dem Wärmeaustauscher noch zusätzlich einen großen Gasheizkessel. Dieser dient zur Notversorgung, falls die Pumpen durch Wartung oder Reparatur einmal ausfallen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger Erdwärme

Übersichtsgrafik: Gegenüberstellung tiefer und oberflächennaher Geothermie anhand ausgewählter Beispiele.Erdwärme oder auch Geothermie bezeichnet das thermische Energiepotenzial im Erdreich. Je nach Tiefe der Erdschichten entsteht die Erdwärme ausschließlich durch Restwärme aus der Erdentstehungszeit und durch radioaktive Zerfallsprozesse (tiefe Geothermie) oder aus der Sonneneinstrahlung (oberflächennahe Geothermie). Die tiefe Geothermie tritt an die Erdoberfläche, z. B. in Form von Thermalquellen und Vulkanen. Bei der oberflächennahen Geothermie zeigt sich ab ca. 15 m Erdtiefe eine jahreszeitenunabhängige Durchschnittstemperatur von 8 bis 12 °C, die sich fast ausschließlich aus der Sonneneinstrahlung speist. Erst ab ca. 100 m Tiefe überwiegt der Wärmezufluss aus dem Erdinneren. Sowohl die oberflächennahe als auch die tiefe Geothermie können mit unterschiedlichen Technologien zur Strom- und Wärmeerzeugung genutzt werden.Übrigens: Neuschnee im Frühjahr schmilzt auf warmer Erde sofort, wenn er direkt mit dieser in Berührung kommt. Fällt der Schnee jedoch auf Gras, bleibt er länger liegen, da das Gras als Isolationsschicht wirkt.Hinweise und Ideen:Das Medium kann einen Überblick über den Energieträger Erdwärme geben. Eine Verknüpfung mit Erdkunde liegt nahe. Mögliche Fragestellung: Welche Regionen bieten sich für die Nutzung tiefer und/oder oberflächennaher Geothermie an (z. B. Vorkommen heißer Thermalquellen in Island)? Ausführliche Informationen findet man im Leitfaden “Regenerative Energien” auf dem Medienportal der Siemens Stiftung.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Die Sonne - unsere Hauptenergiequelle

Grafik, beschriftet:Ein Querschnitt durch die Sonne zeigt die Temperatur- und Dichteprofile in den einzelnen “Sphären”. Die Energie entsteht durch Kernfusion im Sonneninneren.Die Strahlungsenergie der Sonne ist der Motor für die lebenswichtigen Prozesse auf der Erdoberfläche. Die Energie entsteht durch Kernfusion im Sonneninneren und diffundiert nach etwa 10 Mio. Jahren an die Sonnenoberfläche (Photosphäre), die sie als Strahlung an die Erde abgibt. Die Strahlungsenergie, die letztlich auf der Erde ankommt, ist daher uralt. Das Temperaturprofil durch den Sonnenquerschnitt zeigt Temperaturabnahme vom Kern bis zur Photosphäre und Temperaturzunahme von der Photosphäre zur Korona.Hinweis: Die “Schlangenlinien” im Bild symbolisieren die auftretende Strahlung und deren Wellenlänge.Die Strahlung, die auf die Erde trifft, geht von der Photosphäre aus.Hinweise und Ideen:Unter welchen Gesichtspunkten ist die Sonne eine unerschöpfliche Energiequelle? Welche Erklärung gibt es dafür, dass die Temperatur von der Photosphäre zur Korona hin wieder ansteigt? Übrigens: Der Mechanismus der Aufheizung in der Chromosphäre ist weitgehend ungeklärt!


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Baum

Foto:Eine Baumgruppe im Spätsommer. Photosynthese findet nur in den grünen Blättern statt. Hinweise und Ideen:Als Beispiel für die Umwandlung von Strahlungsenergie in chemische Energie.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Welche Energie steckt in welchem Energieträger?

Tabelle:Übersicht, woher die Energie, die in den Primärenergieträgern gespeichert ist, kommt und welcher Energieform sie entspricht.Die Energie, die in den primären Energieträgern gespeichert ist, stammt aus unterschiedlichen Energiequellen: Der Hauptanteil stammt von der Sonne und ist in fossilen und vielen regenerativen Energieträgern in unterschiedlicher Form gespeichert. Im Primärenergieträger “Geothermie” steht die Restwärme des Erdkerns zur Verfügung. Die Energie im Gezeitenhub stammt aus der Rotationsenergie der Erde und die Energie in den nuklearen Energieträgern resultiert aus Prozessen in den Atomkernen bestimmter Elemente. Hinweise und Ideen:Die Schülerinnen und Schüler können überlegen, auf welchen Prozess sich alle Energiequellen letztendlich zurückführen lassen. Welche der Energiequellen sind in Zukunft von großer Bedeutung und warum? Das Beispiel mit dem Gezeitenhub ist didaktisch besonders wertvoll für den Physikunterricht, denn es scheint auf den ersten Blick ein Perpetuum mobile zu sein. Die Frage “Woher stammt die Energie eines Gezeitenkraftwerks?” ist mit “Aus dem Höhenunterschied des Wassers (m x g x h)!” nicht wirklich beantwortet. Zwar leuchtet jedem ein, dass die Hubarbeit der Mond geleistet hat. Doch woher hat er die Energie genommen? Was auf der einen Seite an Energie “gewonnen” wird, muss ja woanders “verloren” gehen. Richtig ist: Die Gravitation des Monds verschiebt die Wassermassen der Meere, was letztlich zu einer Abbremsung der Erdrotation führt. Die im Gezeitenkraftwerk gewonnene mechanische Energie stammt also letztlich aus dem Primärenergieträger “Rotationsenergie der Erde”.

Bild

Logo creative commons

Siemens Stiftung

Parabolrinnenkraftwerk

Foto: Parabolrinnen-Kraftwerk in Lockhart bei Harper Lake in Kalifornien (Mojave Solar Project)Diese Sonnenkraftwerke arbeiten mit langen Zeilen (z. B. 112 m) von Parabolspiegeln, in deren Brennpunkt ein Rohr mit Arbeitsmittel verläuft. Die Ausrichtung der Spiegel wird dem Sonnenstand automatisch nachgeführt. Die Strahlung wird durch die Bündelung im Spiegel 80-fach verstärkt und ein Öl im Absorber wird auf rund 400 °C erhitzt. Das heiße Öl fließt zum Kraftwerkshaus, wo es über einen Wärmeaustauscher Wasserdampf erzeugt, der eine Dampfturbine mit Generator antreibt. (Alternativ werden Kraftwerke mit flüssiger Salzschmelze im Absorberrohr angedacht.) In den USA arbeitet seit 20 Jahren ein Parabolrinnenpark aus neun Kraftwerken mit einer Gesamtleistung von 350 MW. In Spanien erreichen Andasol 1, 2 und 3 zusammen 150 MW. Dank integriertem Wärmespeicher aus Salzschmelze liefert Andasol auch ohne Sonne über 7 h volle Leistung. In Marokko entsteht derzeit die weltweit größte Anlage mit 580 MW.


Dieses Material ist Teil einer Sammlung