Bild

Siemens Stiftung

Ultraschall zur Materialuntersuchung - Prinzip

Grafik, beschriftet: Aus den Laufzeitunterschieden der mit Oszilloskop-Kurven erfassten Echos lassen sich Schichtdicken, Fehler und Konsistenz ermitteln.Im Maschinenbau ist die Kontrolle der Qualität von Werkstoffen eine wichtige Aufgabe. Eine kostengünstige Möglichkeit der Werkstoffprüfung, bei der das zu prüfende Material nicht zerstört wird, basiert auf der Reflexion von Schall an Grenzflächen.Hinweise und Ideen:Diese Aufgaben eignen sich gut dafür zu zeigen, wie Verhalten von Schall in der Praxis genutzt wird.Die Recherche im Internet unterstützt zudem das explorative Lernen.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Elektroakustik Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Mikrofon - glasklar

Grafik: Bei einem Tauschspulenmikrofon wird die Spule im “Takt” des Schalls in einem Magnetfeld bewegt und erzeugt eine tonfrequente Wechselspannung.Im Mikrofon wird die mechanische Energie der Schallwellen in elektrische umgewandelt. Das Mikrofon erzeugt aus den mechanischen Schwingungen der Schallwellen eine elektrisches Signal gleicher Frequenz und Amplitude. Hinweise und Ideen:Veranschaulichung des Vorgangs der Schallwandlung, wie er ja auch im menschlichen Innenohr stattfindet, anhand eines den Schülern geläufigen technischen Geräts.Unterrichtsbezug:Schall/Akustik: KenngrößenKommunikation und VerständigungSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Elektroakustik Schall

Sprachen

Deutsch

Bild

Siemens Stiftung

Lautsprecher

Foto:Der Lautsprecher verkörpert das Prinzip der elektroakustischen Schallwandlung. Vergleiche dazu auch das Video “Schallabstrahlung am Lautsprecher”.Der von einem Verstärker gelieferte tonfrequente Wechselstrom fließt durch eine Spule im Lautsprecher. Beim so genannten Tauchspulenlautsprecher taucht diese Spule in ein ringförmiges permanentes Magnetfeld ein. Andererseits ist die Spule mit einer Membran verbunden. Auf die Spule wirken nun durch den Durchlass des Wechselstroms im permanenten Magnetfeld Kräfte, die diese im “Takt” der Tonfrequenz hin und her schieben. Die Membran wird mitbewegt, überträgt ihre Schwingung auf die Luft, der Schall wird abgestrahlt. Hinweise und Ideen:Anhand eines allen Schülern vertrauten technischen Geräts lässt sich der Vorgang der elektroakustischen Schallumwandlung besonders gut veranschaulichen. Zusätzlich kann auch das Erzeugen und die Ausbreitung von Schallwellen, wie es ja auch in der menschlichen Physiologie für Sprechen und Hören wichtig ist, gezeigt werden.Unterrichtsbezug:Kommunikation und VerständigungSchwingungen und WellenAkustische Phänomene

Bild

Siemens Stiftung

Schallabsorption

Grafik:Treffen Schallwellen auf ein Hindernis mit entsprechender Materialstruktur, werden sie absorbiert, d. h. die gesamte mechanische Energie des Schalls wird in Wärmeenergie umgewandelt.Zur Anwendung kommt dieses Phänomen in Schallschutz-Wänden. Eine hohe Absorption wird mit porigen Materialien erreicht. Durch Multireflexion und Streuung wird der Schallweg in diesen Materialien extrem verlängert. Der Schall “läuft sich tot”. Hinweise und Ideen:Bezug zur Alltagswelt der Schüler: Stille nach einem Schneefall.Kann gemeinsam mit den Schülern im Versuch nachgeprüft werden.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Schallbrechung

Schemagrafik:Schallbrechung in Luft mit unterschiedlichen Temperaturschichten (von warm nach kalt).Die Schallgeschwindigkeit in Luft hängt von der Dichte und damit auch von der Temperatur ab: bei hohen Temperaturen ist der Schall schneller als bei niedrigen. Beim Übergang von einer warmen in eine kältere Luftschicht nimmt die Schallgeschwindigkeit also ab. Mit der Geschwindigkeit ändert sich aber auch die Ausbreitungsrichtung. Man sagt, die Schallwelle wird “gebrochen”. Im beschriebenen Fall, also beim Übergang von warmer nach kalter Luftschicht, wird die Schallwelle nach oben hin gebrochen.Hinweise und Ideen:Wie verhält sich der Schall, wenn er von einer kälteren in eine wärmere Schicht dringt?Ist es richtig, dass man gegen den Wind schlechter hört als mit dem Wind?Letzteres kann gemeinsam mit den Schülerinnen und Schülern im Versuch nachgeprüft werden.Ein Vergleich mit der Brechung von Lichtstrahlen bietet sich an.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Bild

Siemens Stiftung

Beugung

Grafik: Beugung von Wellen beim Auftreffen auf ein Hindernis.Die Grafik zeigt die möglichen Beugungseffekte in Abhängigkeit von Blendenöffnung und Wellenlänge.Hinweise und Ideen:Auch bei Schallwellen kommt es zur Beugung, zum Beispiel an Hausecken.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

13-18

Schlüsselwörter

Licht Optik Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Schallreflexion

Grafik:Wenn Schallwellen auf ein Hindernis treffen, können sie ähnlich wie Licht reflektiert werden.Wenn eine Schallwelle auf eine große, harte Oberfläche trifft, tritt eine Schallreflexion auf:Der Schall wird von der Oberfläche reflektiert, wie Licht von einem Spiegel. Hinweise und Ideen:Bezug zur Alltagswelt der Schüler: Echo im Gebirge.Kann gemeinsam mit den Schülern im Versuch nachgeprüft werden.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Stimmgabel als “einfacher” Ton

Grafik: Oszilloskop-Kurve eines Stimmgabeltons als Beispiel für einen einfachen Ton mit in der Anschwingphase sichtbaren Obertönen.Stimmgabeln erzeugen einfache periodische Töne, diese sind aber streng genommen nicht wirklich rein, da sich hier bereits Obertöne überlagern. Hinweise und Ideen:Möglicher Querverweis: Untersuchung von aperiodischen Sprachsignalen mithilfe der Spektralanalyse.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Schall Welle (Physik)

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Prüfton als reinstes Schallsignal

Grafik: Oszilloskop-Kurve eines periodischen Tons einer einzigen Frequenz (Reinton). Der Ton wurde mit einem elektronischen Tongenerator erzeugt.Einfache periodische Töne enthalten als “Reinton” nur eine einzige Frequenz (monofrequenter Sinuston). Das gibt es nur in der Messtechnik als synthetisch erzeugten “Prüfton”.Hinweise und Ideen:Möglicher Querverweis: Untersuchung von aperiodischen Sprachsignalen mithilfe der Spektralanalyse.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Schall Welle (Physik)

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Schwingungen und Wellen

Übersichtsgrafik:Die wichtigsten Kenngrößen von Schwingungen und Wellen im Überblick.Elektromagnetische Wellen sind Schwingungen der elektrischen und magnetischen Feldstärke, die sich räumlich mit Lichtgeschwindigkeit fortpflanzen. Die Kenngrößen der Schwingungen und Wellen, wie z. B. die Frequenz, werden hier in der Übersicht gezeigt.Hinweise und Ideen:Als Überblicksinformation für die Schülerinnen und Schüler zum Thema “Schwingungen und Wellen”. Wichtige Grundlage für das Verständnis der Schallwellen in der Akustik.

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Diagramm Optik Schall Welle (Physik)

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung