Bild

Siemens Stiftung

Strahlungsenergie

Diagramm:Formeln für die Strahlungsenergie elektromagnetischer Wellen und das Planck'sche Strahlungsgesetz.Strahlungsenergie ist die Energie elektromagnetischer Wellen. Sie ist proportional zum Quadrat der Amplitude der elektrischen bzw. der magnetischen Feldstärke. Elektromagnetische Wellen hoher Frequenz und damit Energie haben Teilchencharakter. Die Energie dieser Teilchen ist proportional zur Frequenz bzw. umgekehrt proportional zu ihrer Wellenlänge. Der Proportionalitätsfaktor ist das Planck’sche Wirkungsquantum h. Dass Strahlungsenergie quantisiert sein muss, fand Max Planck bei der Untersuchung der Strahlung schwarzer Körper. Er formulierte ein Strahlungsgesetz, das aber erst durch Einsteins Postulat von den Lichtquanten erklärt werden konnte. Zahlenbeispiel für die Planck’sche Strahlungsformel:Die Sonne hat eine Oberflächentemperatur von 5.800 K, die damit verbundene Strahlungsleistung ist nach der Planck’schen Strahlungsformel 3,85 x 1023 kW. Davon trifft nur ein sehr kleiner Anteil auf die Erde (bei senkrechtem Strahlungseinfall 1,37 kW/m²).Hinweise und Ideen:Strahlungsenergie kann vielfach in andere Energieformen umgewandelt werden: Beim Röntgen wird die Strahlungsenergie in chemische Energie verwandelt (Schwärzung des Fotofilms), Licht wird in der Solarzelle in elektrische Energie umgewandelt, ebenso Funkwellen in einer Antenne. Die Energie von Mikrowellen kann man zur Erwärmung von Speisen verwenden.

Bild

Siemens Stiftung

Thermische Energie

Diagramm:Formeln für die thermische Energie von Gasen sowie die Temperaturabhängigkeit der zugehörigen molaren Wärmekapazität bei konstantem Volumen.Die thermische oder innere Energie eines Stoffs ist die Summe der Bewegungsenergien seiner Atome bzw. Moleküle. Diese Energie ist als Temperatur messbar. Führt man dem Stoff Wärme zu, steigt die Teilchengeschwindigkeit und damit die Temperatur. Bei molekularen Gasen kann die Wärmezufuhr zusätzlich zur translatorischen Bewegung die Anregung anderer Bewegungsformen (Rotation und Schwingung) hervorrufen. Dies drückt sich im stufenförmigen Verlauf der molaren Wärmekapazität aus (Diagramm rechts). Die molare Wärmekapazität eines Stoffs gibt an, wie viel Energie man zuführen muss, um 1 mol eines Stoffs um 1 °C zu erhöhen. Für gasförmige Stoffe gilt: Falls die Gasteilchen sich nur linear bewegen (Translation), ist die Wärmemenge, die zugeführt werden muss, um das Gas um 1 °C zu erhöhen, konstant 3R/2. Im Fall molekularer Gase fangen die Moleküle ab einer bestimmten Temperatur an zu rotieren. In diesem Bereich (linearer Anstieg im Diagramm) muss man mehr Energie zuführen, um die Temperatur um 1 °C zu erhöhen, da die Energie nicht nur in die translatorische Bewegung geht, sondern auch in die Anregung der Rotation. Sind alle Teilchen in Rotation versetzt, so ist die Energie, die zugeführt werden muss, um die Temperatur um 1 °C zu erhöhen, wieder konstant 5R/2. Der Anstieg beim Übergang von Rotation nach Schwingung lässt sich analog erklären. Hinweise und Ideen:Die Übersichtsgrafik fasst das Thema Wärmeenergie am Beispiel Gase zusammen. Ausführliche Erläuterungen und Erläuterungen zur Wärme in Feststoffen findet man im Leitfaden “Was ist Energie?”.

Bild

Logo creative commons

Siemens Stiftung

Dish-Stirling-Anlage

Foto:Ein sog. Euro-Dish-Stirling-Kraftwerk in Südfrankreich. Es hat bei 17 m Durchmesser eine Leistung von 50 kW.Kleinere Solarkraftwerke besitzen einen runden Hohlspiegel (“dish” = Teller), in dessen Brennpunkt sich der Arbeitszylinder eines Stirlingmotors befindet. Auf die Welle eines Stirlingmotors ist direkt der Generator aufgesetzt. (Alternative: Verwendet man einen Permanentmagneten als Kolben, kann die Stromerzeugung als Lineargenerator direkt in den Stirlingmotor integriert werden). Dish-Sterling-Kraftwerke werden z. B. in sonnenreichen Gegenden ohne Stromnetz zum teilweisen Ersatz von Dieselgeneratoren eingesetzt. Bei entsprechend großen Batteriespeichern kann auf Dieselgeneratoren verzichtet werden.Quelle des Fotos: https://commons.wikimedia.org/w/index.php?curid=362869


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Schallabsorption

Grafik:Treffen Schallwellen auf ein Hindernis mit entsprechender Materialstruktur, werden sie absorbiert, d. h. die gesamte mechanische Energie des Schalls wird in Wärmeenergie umgewandelt.Zur Anwendung kommt dieses Phänomen in Schallschutz-Wänden. Eine hohe Absorption wird mit porigen Materialien erreicht. Durch Multireflexion und Streuung wird der Schallweg in diesen Materialien extrem verlängert. Der Schall “läuft sich tot”. Hinweise und Ideen:Bezug zur Alltagswelt der Schüler: Stille nach einem Schneefall.Kann gemeinsam mit den Schülern im Versuch nachgeprüft werden.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Schallbrechung

Schemagrafik:Schallbrechung in Luft mit unterschiedlichen Temperaturschichten (von warm nach kalt).Die Schallgeschwindigkeit in Luft hängt von der Dichte und damit auch von der Temperatur ab: bei hohen Temperaturen ist der Schall schneller als bei niedrigen. Beim Übergang von einer warmen in eine kältere Luftschicht nimmt die Schallgeschwindigkeit also ab. Mit der Geschwindigkeit ändert sich aber auch die Ausbreitungsrichtung. Man sagt, die Schallwelle wird “gebrochen”. Im beschriebenen Fall, also beim Übergang von warmer nach kalter Luftschicht, wird die Schallwelle nach oben hin gebrochen.Hinweise und Ideen:Wie verhält sich der Schall, wenn er von einer kälteren in eine wärmere Schicht dringt?Ist es richtig, dass man gegen den Wind schlechter hört als mit dem Wind?Letzteres kann gemeinsam mit den Schülerinnen und Schülern im Versuch nachgeprüft werden.Ein Vergleich mit der Brechung von Lichtstrahlen bietet sich an.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Bild

Siemens Stiftung

Wellen im Wasser

Foto: Geht es um eine erste Vorstellung, eignet sich die Ausbreitung von Wasserwellen gut, um sich dem Verständnis der Schallwellen anzunähern.Nachdem ein Stein ins Wasser geworfen wurde, breiten sich von der Einwurfstelle konzentrische Kreise aus. Ähnlich ist es mit den Schallwellen, die sich von einer Schallquelle wegbewegen.Hinweise und Ideen:Das bekannte Bild kann für die Schülerinnen und Schüler eine Hilfe sein, sich die Ausbreitung der Schallwellen modellhaft vorzustellen. (Streng genommen unterscheiden sich Wasserwelle und Schallwelle allerdings in Bezug auf die Schwingungsrichtung - transversal bzw. longitudinal!) Unterrichtsbezug:Akustische PhänomeneSchwingungen und Wellen

Bild

Siemens Stiftung

Ultraschall zur Materialuntersuchung - Prinzip

Grafik, beschriftet: Aus den Laufzeitunterschieden der mit Oszilloskop-Kurven erfassten Echos lassen sich Schichtdicken, Fehler und Konsistenz ermitteln.Im Maschinenbau ist die Kontrolle der Qualität von Werkstoffen eine wichtige Aufgabe. Eine kostengünstige Möglichkeit der Werkstoffprüfung, bei der das zu prüfende Material nicht zerstört wird, basiert auf der Reflexion von Schall an Grenzflächen.Hinweise und Ideen:Diese Aufgaben eignen sich gut dafür zu zeigen, wie Verhalten von Schall in der Praxis genutzt wird.Die Recherche im Internet unterstützt zudem das explorative Lernen.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Elektroakustik Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Schallausbreitung: Tamburin und Kerze 3

Foto:Die vom Tamburin ausgehenden Schallwellen löschen eine brennende Kerze aus. Drittes von drei Fotos zum Versuch “Tamburin bläst Kerze aus”.Der Versuch “Tamburin bläst Kerze aus” demonstriert eindrucksvoll, wie Schallwellen sich ausbreiten und dass damit eine Bewegung der Luftteilchen verbunden ist.Hinweise und Ideen:Einfacher Versuch, der leicht im Klassenzimmer durchzuführen ist.Weitere inhaltliche Informationen zu diesem Foto gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Akustische PhänomeneSchall/Akustik: KenngrößenSchwingungen und Wellen


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Schallstreuung

Grafik:Schallstreuung. Eine von mehreren Verhaltensweisen von Schallwellen, wenn sie auf ein Hindernis treffen.Unter Streuung versteht man eine Reflexion an kleinen Strukturen ohne ausgeprägte Vorzugsrichtung. Sie ist stark frequenzabhängig. Hinweise und Ideen:Kann gemeinsam mit den Schülern im Versuch nachgeprüft werden.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Optik Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Schallbeugung

Schemagrafik:Beugung ist eine typische Verhaltensweise von Schallwellen, wenn sie auf ein Hindernis treffen.Die Beugung von Schallwellen ist ein physikalischer Mechanismus, der für das Eindringen von Schallenergie in akustische Schatten sorgt. Das heißt der Schall ist auch in Bereichen hörbar, die vom direkten Schalleinfall abgeschattet sind, wie etwa hinter Hindernissen. Hinweise und Ideen:Die Beugung des Lichts lässt sich nachweisen, wenn ein paralleles Strahlenbündel einfarbigen Lichts auf einen engen Spalt gerichtet wird. Ein hinter dem Spalt aufgestellter Schirm gibt eine Beugungsfigur (helle und dunkle Streifen, die nach außen an Intensität verlieren).Beim Schall ist ein direkter Bezug zur Alltagswelt der Schüler noch besser möglich: Warum kann man die vor einem Gebäude verlaufende Straße hören, obwohl man dahinter steht?Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

13-18

Schlüsselwörter

Diagramm Optik Schall Welle (Physik)

Sprachen

Deutsch