Bild

Siemens Stiftung

Vom Wasserrad zur Turbine (GS)

Fotocollage:
Fotos von einem Wasserrad sowie drei verschiedenen Turbinenarten.

Schon früh setzte man Wasserräder ein, um die Energie von Wasser zu nutzen, z. B. zum Antreiben eines Mühlrads. Die Turbinen, die in Wasserkraftwerken eingesetzt werden, sind eine Weiterentwicklung des klassischen Wasserrads, um Generatoren für die Stromerzeugung anzutreiben. Diese Turbinen heißen nach ihren Erfindern: Pelton, Kaplan und Francis.

Bild

Siemens Stiftung

Speicherkraftwerk

Grafik:
Funktionsprinzip eines Speicherkraftwerks.

Beim Speicherkraftwerk wird von Natur aus nachfließendes Wasser mithilfe eines Stausees angestaut und für Bedarfsspitzen bevorratet. Das gestaute Wasser wird dann mittels Druckrohrleitungen zu den Turbinen des niedriger gelegenen Kraftwerks geführt. Die gesamte Lageenergie des Wassers im Speicherbecken ist also ein Energiespeicher für Spitzenzeiten. Kleinere Speicherkraftwerke verwenden Pelton-Turbinen, große Speicherkraftwerke (großer Druck und große Wassermenge) verwenden Francis-Turbinen.

Bild

Siemens Stiftung

Phase diagram of water

Diagram:
A P-T diagram for pure water. The lines indicate the temperature and the pressure at which the solid, liquid, and vapor phases exist in equilibrium. All three phases exist in equilibrium only at the triple point; otherwise, there are a maximum of two phases.

In addition to the equilibrium curves (melting pressure curve, sublimation curve, vapor pressure curve), the diagram also includes the pressure and temperature data for the melting, boiling, triple, and critical points.
Attention: The axes of the diagram are not shown true to scale.

Information and ideas:
This diagram also reflects the density anomaly of water (lower density in the solid state than in the liquid state): The melting pressure curve shows a negative slope. The reason for the density anomaly is the hydrogen bonds.

Bild

Siemens Stiftung

Steam pressure curve and phase diagram of water

Charts:
The steam pressure curves (p-V diagram) and the phase diagram (p-T diagram) of water are compared.

If you heat water to 100 °C at normal atmospheric pressure, it turns into steam. But what effect does raising or lowering the pressure have on the vaporization temperature?
The answer to this is given by the steam pressure curve (T-curves in the p-V diagram on the left) and the phase diagram (p-T diagram of the right) of the water. Steam pressure is the term for the pressure at which gas and liquid are in equilibrium, i.e. the same number of molecules evaporate as condense back into water. Above the critical temperature (numerical values are given) the water is always gaseous, regardless at what temperature, and it can be treated as a real gas (Van der Waals equation, formula is given). At every temperature below the critical temperature there is a steam pressure for which there is a two-phase zone (liquid and gaseous). In the liquid phase range it is possible to recognize from the steep rise in the curves that liquid substances are barely compressible.
The critical temperature must not be confused with the triple point temperature (see p-T diagram). This characterizes the values of temperature and pressure at which all phases (solid, liquid and gaseous) are present simultaneously.

Information and ideas:
At what temperature does water boil on Mount Everest? So-called "Steam pressure tables" provide information about this. It would also be interesting to refer to the phase transition points as temperature critical points. At the phase transition from liquid to gaseous the energy applied does not initially lead to an increase in temperature. The same applies to the melting of ice. Not until all the water has evaporated or melted does the temperature rise further.

Bild

Siemens Stiftung

Windrad in Landschaft

Foto:Windrad mit umgebender LandschaftDas abgebildete Windrad mit 3 MW Leistung steht in Oberbayern. Obwohl diese Gegend nicht besonders windreich ist, lieferte es von Ende 2014 bis Anfang 2017 mehr Strom als geplant und hat sich als wirtschaftlich erwiesen. Überprüfungen ergaben, dass das Windrad in diesem Zeitraum keine negativen Auswirkungen auf Vögel und Fledermäuse hatte.Hinweise und Ideen:Das Foto eignet sich als Einstieg ins Thema Windenergie und Umwelt. Rechercheauftrag: Die Schülerinnen und Schüler können recherchieren, welche gesetzlichen Vorgaben es für die Aufstellung von Windkraftanlagen gibt. Und welche Argumente werden für und gegen die Aufstellung solcher Windräder genannt?

Bild

Siemens Stiftung

Principle of a clay cooler

Schematic diagram:
The evaporation process on the surface of a ceramic cooler is shown schematically.

The ceramic cooler made of fired clay was soaked in cold water and then removed. The pores of the ceramic filled up with water. If a cold beverage bottle is then placed inside, it will stay cold for a relatively long time in the ceramic cooler, even if the surrounding temperature is higher. As the water evaporates from the pores of the ceramic cooler, heat is constantly extracted from the air in the interior of the clay pot (evaporation heat and some adsorption heat). As a result, the air inside the clay pot stays cold, as does the bottle placed inside.

Bild

Siemens Stiftung

Dampfdruckkurve und Phasendiagramm von Wasser

Diagramme:Die Dampfdruckkurven (p-V-Diagramm) und das Phasendiagramm (p-T-Diagramm) von Wasser werden gegenübergestellt.Erhitzt man Wasser bei atmosphärischem Normaldruck auf 100 °C, so entsteht Dampf. Wie wirkt sich aber eine Erhöhung oder Absenkung des Drucks auf die Verdampfungstemperatur aus?Die Antwort geben die Dampfdruckkurve (T-Kurven im p-V-Diagramm links) und das Phasendiagramm (p-T-Diagramm rechts) des Wassers. Dampfdruck nennt man den Druck, bei dem Gas und Flüssigkeit im Gleichgewicht miteinander stehen, d. h., es verdampfen ebenso viele Moleküle wie auch wieder kondensieren. Oberhalb der kritischen Temperatur (Zahlenwerte sind angegeben) ist das Wasser, egal bei welchem Druck, immer gasförmig und es kann als reales Gas behandelt werden (Van-der-Waals-Gleichung, Formel ist angegeben). Unterhalb der kritischen Temperatur gibt es zu jeder Temperatur einen Dampfdruck, für den ein Zweiphasengebiet (flüssig und gasförmig) vorliegt. Im Bereich der flüssigen Phase kann man an der steilen Steigung der Kurven erkennen, das flüssige Substanzen kaum kompressibel sind. Die kritische Temperatur darf nicht verwechselt werden mit der Temperatur des Tripelpunkts (siehe p-T-Diagramm). Er kennzeichnet die Werte von Temperatur und Druck, bei der alle Phasen (fest - flüssig - gasförmig) gleichzeitig vorliegen. Hinweise und Ideen:Bei welcher Temperatur kocht Wasser auf dem Mount Everest? Sog. “Dampfdrucktabellen” geben Aufschluss darüber. Interessant wäre auch der Hinweis auf die Phasenwandlungspunkte als Haltepunkte der Temperatur. Beim Phasenübergang von flüssig nach gasförmig führt die zugeführte Energie zunächst nicht zur Temperaturerhöhung. Ebenso beim Schmelzen von Eis. Erst wenn alles Wasser verdampft bzw. geschmolzen ist, steigt die Temperatur weiter.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Excitation energy of a water molecule

Chart:
Water can absorb heat energy in the form of vibrations or movement of its molecules. This energy content depends on the physical state: steam contains more energy than liquid water, for example.

The material surrounding us takes on different physical states depending on pressure and temperature (in Kelvin): solid, liquid or gaseous. This also applies to water: During a phase change from solid to liquid and liquid to gas respectively the energy of the water molecules increases without the temperature rising - the diagram for water shows plateaus. The values of these plateaus are approx. 6 kJ/mol (melting heat) and approx. 40,7 kJ/mol (vaporization heat) respectively.

Information and ideas:
Ideally suited for explaining the topic of phase equilibrium.

Bild

Siemens Stiftung

Experiment on the water cycle

Graphic to the experiment:
Experiment setup: "The small water cycle". This experiment replicates the natural water cycle.

The experiment is set up in a sealable jar.
The water evaporates from the bowl, condenses on the lid, and drips on the plants and soil. It then evaporates from the soil and the plants.

Information and ideas:
The graphic shows students how to set up a small-scale water cycle.
The questions guide their observations and further conjectures.

Bild

Logo creative commons

Siemens Stiftung

Turbinen und Generatoren im Walchenseekraftwerk

Foto:Turbinenhalle im Walchenseekraftwerk bei Kochel in Oberbayern, Deutschland. Links sieht man die horizontal liegenden Francisturbinen und rechts die damit verbundenen Generatoren.Das Walchensee-Kraftwerk gehört zu den größten Speicher-Kraftwerken Deutschlands. Als es 1924 in Betrieb genommen wurde, war es eines der modernsten Speicherkraftwerke weltweit. Es nutzt zwei natürliche Seen, den Walchensee als Oberbecken und den Kochelsee als Unterbecken. Über sechs 430 m lange Druckrohre mit einem nach unten leicht abnehmenden Durchmesser von rund 2 m fließt das Wasser über 200 m Fallhöhe zu den acht Turbinen im Maschinenhaus. Jährlich liefern die 8 Turbinen etwa 300 Millionen Kilowattstunden umweltfreundliche Energie. An die 100.000 Besucher besichtigen jährlich das Informationszentrum am Walchenseekraftwerk.