Bild

Siemens Stiftung

Anteil der Energieträger am weltweiten Strommix von 2005 bis 2040

%iagramm:Das Diagramm zeigt, dass die regenerativen Energien ab ca. 2040 auch weltweit den größten Anteil an der Stromerzeugung haben werden. Es wird deutlich, dass auch in Zukunft die fossilen Energieträger, insbesondere die Kohle, und die dafür entwickelten Kraftwerkstechnologien eine zentrale Rolle bei der Energieversorgung spielen werden. Diese Rolle wird aber zunehmend kleiner.Hinweise und Ideen:In Deutschland sowie in einigen anderen Ländern soll laut Prognosen der Anteil der regenerativen Energien an der Stromerzeugung wesentlich schneller steigen als am gesamten Primärenergieverbrauch. In Deutschland z. B. soll der Anteil in 2040 bei Strom bereits über 65 % liegen. Weltweit liegen die Prognosen sowohl bei Strom als auch beim Gesamtprimärenergieverbrauch (also Strom + Verkehr + Wärmeerzeugung) allerdings gleichauf bei gut 30 %. Wie kann man diesen Unterschied erklären?Unter Verwendung der Quelle: “World Energy Outlook 2012”, International Energy Agency IEA (2012%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Kohlendioxidemissionen von Kraftwerken

Diagramm:Kohlendioxidemissionen für verschiedene Kraftwerkstypen im Vergleich.Das Diagramm zeigt, welche Menge Kohlendioxid (CO2, Angaben in Kilogramm) bei der “Gewinnung” von einer Kilowattstunde Energie aus verschiedenen Arten von Energieträgern anfällt. Zusätzlich sind die Kohlendioxidmengen, die bei der Brennstoffversorgung und bei Bau der Kraftwerke freigesetzt werden, angegeben. Aus der Gruppe der fossilen Energieträger hat Erdgas einen relativ niedrigen Kohlendioxidausstoß und ist damit neben den regenerativen Energien und der Kernkraft eine gute Alternative zur Kohlendioxidreduktion. Erdgas kann besonders effizient in GuD-Kraftwerken zur Stromerzeugung eingesetzt werden. Hinweise und Ideen:Wichtig ist die Erkenntnis, dass auch regenerative Stromerzeugung Kohlendioxidemissionen impliziert (durch den Bau).


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Windrad in Landschaft

Foto:Windrad mit umgebender LandschaftDas abgebildete Windrad mit 3 MW Leistung steht in Oberbayern. Obwohl diese Gegend nicht besonders windreich ist, lieferte es von Ende 2014 bis Anfang 2017 mehr Strom als geplant und hat sich als wirtschaftlich erwiesen. Überprüfungen ergaben, dass das Windrad in diesem Zeitraum keine negativen Auswirkungen auf Vögel und Fledermäuse hatte.Hinweise und Ideen:Das Foto eignet sich als Einstieg ins Thema Windenergie und Umwelt. Rechercheauftrag: Die Schülerinnen und Schüler können recherchieren, welche gesetzlichen Vorgaben es für die Aufstellung von Windkraftanlagen gibt. Und welche Argumente werden für und gegen die Aufstellung solcher Windräder genannt?


Bild

Siemens Stiftung

Funktionaler Aufbau eines Windrads

Grafik:Windrad in seinem gesamten Aufbau mit Sockel und Turm schematisch dargestellt.Das Fundament bildet die Verankerung der Windkraftanlage im Erdreich. Um die Standfestigkeit der Windenergie-Anlage zu gewährleisten, wird je nach Festigkeit des Untergrundes eine Pfahl- oder Flachgründung vorgenommen. Der Turm ist das größte und schwerste Teil einer Windenergieanlage. Er ist üblicherweise zwischen ein bis 1,8 Mal länger als der Rotordurchmesser und kann mehrere Hundert Tonnen schwer sein. Die Turmkonstruktion selbst trägt nicht nur die Massen der Maschinengondel und der Rotorblätter, sondern muss auch die enormen statischen Belastungen durch die wechselnden Kräfte des Windes auffangen. Man verwendet in der Regel Rohrkonstruktionen aus stapelbaren Beton- oder Stahlsegmenten. Die Turmhöhe bzw. die Nabenhöhe beträgt bei 3 MW bis ca. 6 MW Leistung und bei einem Rotordurchmesser von ca. 110 bis 130 m zwischen ca. 120 bis 130 m.Der Rotor ist diejenige Komponente, die mithilfe der Rotorblätter die im Wind enthaltene Energie in eine mechanische Drehbewegung umwandelt. Die Gondel mit Maschinenstrang (Triebstrang) enthält den gesamten Maschinensatz. (Funktionen im Detail siehe Medium “Windrad - Innenansicht”!)Hinweise und Ideen: Im Rahmen des Physikunterrichts könnte geklärt werden, warum es bei Durchströmung mit Wind zu einer Bewegung der Rotorbätter kommt (Strömungslehre von Venturi und Bernoulli).


Bild

Siemens Stiftung

Windrad - Innenansicht

%rafik, beschriftet:Rotor und Gondel (“Maschinenhaus”) eines Dreiflügel-Windrads mit horizontaler Drehachse. Die Innenansicht der Gondel wird gezeigt, die einzelnen Komponenten sind beschriftet.Das hier gezeigte Dreiflügel-Windrad mit horizontaler Rotationsachse ist bei großen Windkraftanlagen die häufigste Konstruktion. Das Windrad besteht aus einem Rotor und einer Gondel (“Maschinenhaus”), die auf einem hohen Turm angebracht sind.Das Funktionsprinzip: Das Anemometer misst die Windgeschwindigkeit. Die Daten werden an den Überwachungscomputer gesendet. Dieser steuert das Windrad und bedient den Nachführmotor, der das Windrad ausrichtet. Steht das Windrad optimal zum Wind, so übt dieser ein Drehmoment auf die Rotorblätter aus: Das Windrad dreht sich (ca. 20 Umdrehungen/min) und mit ihm die Antriebswelle. Das Getriebe wandelt die Drehzahl des Rotors in die für den Generator nötige Drehzahl (in Europa 1.500 U/min oder 3.000 U/min, in den USA 1.800 U/min oder 3.600 U/min) um. Der Generator erzeugt den Strom. Dieser wird über Kabel zum Fuß des Windrads hinuntergeleitet. Dort erfolgt die Einspeisung ins Netz. Der Wirkungsgrad eines Windrads liegt bei optimalen Windverhältnissen bei 40 - 51 %. (Der theoretisch maximale Wert liegt bei 59,3 %, ist aber praktisch nicht erreichbar.)Übrigens: Die Bremse sorgt dafür, dass das Windrad sich nicht drehen kann, z. B. bei extremem Sturm oder wenn es gewartet werden muss. (Es gibt auch Windräder ohne Getriebe, siehe dazu die Beschreibung beim Medium “Generator für Windrad”!). Hinweise und Ideen:Welche Vorteile hat ein Dreiflügel-Windrad gegenüber einem Ein-, Zwei- oder Vierblattflügler?Es lohnt der Hinweis, dass es auch Windräder mit vertikaler Drehachse gibt (Savonius-, Darrieus-Windrad). Wann setzt man diese Bauformen ein%


Dieses Material ist Teil einer Sammlung

Bild

Logo creative commons

Siemens Stiftung

Generator für Windrad

Foto:Rotor des Generators einer Windenergieanlage.Es handelt sich hier um einen Vielpol-Generator, erkenntlich an der Vielzahl von Spulen auf dem äußeren Ring. Diese bewegen sich bei Betrieb an einem Statorring vorbei, der mit einer entsprechenden Anzahl von Permanentmagneten bestückt ist. Im Innenbereich des Rotors kann man die Regelelektronik erkennen. Diese Vielpol-Generatoren mit Permanentmagneten liefern bei relativ geringem Volumen und geringer Masse über einen weiten Drehzahlbereich gute Leistung. Auf ein Getriebe zur Anpassung der Frequenz des gelieferten Wechselstroms kann verzichtet werden. Der Wechselstrom, egal welcher Drehzahl, wird zunächst gleichgerichtet und anschließend nach elektronischer Wechselrichtung mit exakt 50 Hz ins Netz eingespeist. Hinweise und Ideen:Wie hängt die Frequenz eines Wechselstromgenerators von der Drehzahl ab? Warum haben herkömmliche Windräder eine aufwändige Drehzahlregelung mit Getriebe und Generatoren mit abschaltbaren Polpaaren?


Bild

Siemens Stiftung

Fakten zur Sonnenenergie

%?bersichtsgrafik:Schematische Darstellung des Energieflusses von der Sonne zur Erde: Wie viel Energie produziert die Sonne und wie viel davon kommt auf der Erdoberfläche an?Die Sonne ist der Hauptenergielieferant der Erde, sie liefert etwa 99,98 % des gesamten Energiebeitrags zum Erdklima. Welch großes Potenzial in der technischen Nutzung der Sonnenenergie als Energiequelle steckt, wird dadurch deutlich, dass der derzeitige Weltenergieverbrauch nur 0,006 % der eingestrahlten Sonnenenergie beträgt. Die Grafik gibt einen Überblick über die von der Sonne abgestrahlten und auf der Erde ankommenden Energiemengen. Zu beachten ist, dass die von der Sonne eingestrahlte Energie letztlich zu 100 % wieder von der Erde zurück in den Weltraum abgestrahlt wird. Die Energiebilanz der Erde ist in allen Ebenen von der Erdoberfläche bis zum Weltraum ausgeglichen. Doch Achtung: Ein minimaler Bruchteil der eingestrahlten Energie wird durch die Photosynthese (ca. 0,1 %) oder durch menschliche Aktivitäten (ca. 0,005 %) gespeichert und verbleibt längerfristig auf der Erde.Hinweise und Ideen:Um die Anschaulichkeit zu erhöhen, sind hier die Größenverhältnisse von Sonne und Erde nicht maßstabsgetreu umgesetzt. Es ist berücksichtigt, dass letztlich 100 % der eingestrahlten Energie wieder ins Weltall zurückgestrahlt werden%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Strahlungsenergie

Diagramm:Formeln für die Strahlungsenergie elektromagnetischer Wellen und das Planck'sche Strahlungsgesetz.Strahlungsenergie ist die Energie elektromagnetischer Wellen. Sie ist proportional zum Quadrat der Amplitude der elektrischen bzw. der magnetischen Feldstärke. Elektromagnetische Wellen hoher Frequenz und damit Energie haben Teilchencharakter. Die Energie dieser Teilchen ist proportional zur Frequenz bzw. umgekehrt proportional zu ihrer Wellenlänge. Der Proportionalitätsfaktor ist das Planck’sche Wirkungsquantum h. Dass Strahlungsenergie quantisiert sein muss, fand Max Planck bei der Untersuchung der Strahlung schwarzer Körper. Er formulierte ein Strahlungsgesetz, das aber erst durch Einsteins Postulat von den Lichtquanten erklärt werden konnte. Zahlenbeispiel für die Planck’sche Strahlungsformel:Die Sonne hat eine Oberflächentemperatur von 5.800 K, die damit verbundene Strahlungsleistung ist nach der Planck’schen Strahlungsformel 3,85 x 1023 kW. Davon trifft nur ein sehr kleiner Anteil auf die Erde (bei senkrechtem Strahlungseinfall 1,37 kW/m²).Hinweise und Ideen:Strahlungsenergie kann vielfach in andere Energieformen umgewandelt werden: Beim Röntgen wird die Strahlungsenergie in chemische Energie verwandelt (Schwärzung des Fotofilms), Licht wird in der Solarzelle in elektrische Energie umgewandelt, ebenso Funkwellen in einer Antenne. Die Energie von Mikrowellen kann man zur Erwärmung von Speisen verwenden.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Solarthermische Kraftwerke - Prinzip

Grafik, beschriftet:Das physikalische Prinzip eines Parabolrinnenkraftwerks und einer Dish-Stirling-Anlage im Vergleich.Zunehmend werden Kraftwerke zur Stromerzeugung aus Sonnenwärme gebaut. Die Grafik zeigt zwei Bauweisen, die sich durchgesetzt haben.Parabolrinnenkraftwerk: Ein großes Sonnenkraftwerk, dessen Leistung vergleichbar mit Kohlekraftwerken ist. Lange Zeilen von Parabolspiegeln haben in ihrem Brennpunkt ein Absorberrohr, das mit einem Arbeitsmittel gefüllt ist. Über einen Wärmeaustauscher erzeugt das heiße Arbeitsmittel Dampf, mit dem sich dann große Dampfturbinen und Generatoren betreiben lassen.Dish-Stirling-Anlage: Ein eher kleines Kraftwerk, dessen zentrales Element ein großer runder Hohlspiegel (Dish, Teller) ist. In seinem Brennpunkt befindet sich der Arbeitszylinder eines Stirlingmotors, der einen Generator antreibt. Das gegenwärtig leistungsfähigste Kraftwerk dieser Art ist der Euro-Dish-Stirling-Typ. Hinweise und Ideen:Zu den solarthermischen Kraftwerken zählen auch das “Aufwindkraftwerk”, der “Sonnenofen” und das “Turmkraftwerk”. Wie sind diese Kraftwerke aufgebaut und wie funktionieren sie? In welchen Gegenden auf der Erde gibt es solarthermische Kraftwerke und von welchem Typ sind sie? Weiterführende Informationen zum solarthermischen Kraftwerk findet man im Leitfaden “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Logo creative commons

Siemens Stiftung

Dish-Stirling-Anlage

Foto:Ein sog. Euro-Dish-Stirling-Kraftwerk in Südfrankreich. Es hat bei 17 m Durchmesser eine Leistung von 50 kW.Kleinere Solarkraftwerke besitzen einen runden Hohlspiegel (“dish” = Teller), in dessen Brennpunkt sich der Arbeitszylinder eines Stirlingmotors befindet. Auf die Welle eines Stirlingmotors ist direkt der Generator aufgesetzt. (Alternative: Verwendet man einen Permanentmagneten als Kolben, kann die Stromerzeugung als Lineargenerator direkt in den Stirlingmotor integriert werden). Dish-Sterling-Kraftwerke werden z. B. in sonnenreichen Gegenden ohne Stromnetz zum teilweisen Ersatz von Dieselgeneratoren eingesetzt. Bei entsprechend großen Batteriespeichern kann auf Dieselgeneratoren verzichtet werden.Quelle des Fotos: https://commons.wikimedia.org/w/index.php?curid=362869


Dieses Material ist Teil einer Sammlung