Bild

Siemens Stiftung

Temperaturabhängigkeit der Dichte

Diagramm: Dichte-Temperatur-Verlauf bei Wasser im Vergleich zu Benzol; Gegenüberstellung veranschaulicht die Dichteanomalie des Wassers.Bei den meisten Stoffen gilt als kontinuierlicher Verlauf: je höher die Temperatur, desto niedriger die Dichte der Substanz. Bei Phasenübergängen (Gas -> Flüssigkeit -> Feststoff) ändert sich die Dichte um diesen Temperaturbereich drastisch. Bei Wasser tritt jedoch ein Dichtesprung um den Gefrierpunkt auf. Die Dichte nimmt nicht zu, sondern entgegen den Erwartungen ab. Im Gegensatz dazu zeigt die Grafik den Dichte-Temperatur-Verlauf bei “normalen” Stoffen (hier Benzol). Hinweise und Ideen:Woher könnte dieses Verhalten kommen?Welche praktische Bedeutung hat diese Anomalie des Wassers?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Bild

Siemens Stiftung

Weltweiter Verbrauch fossiler Energieträger

Diagramm und Tabelle:Der weltweite Verbrauch fossiler Energieträger und deren Einsatz bei der Strom- und Wärmeerzeugung in Zahlen.Das Tortendiagramm gibt den prozentualen Anteil der fossilen Energieträger (Kohle, Erdöl und Erdgas) an der weltweiten Primärenergieversorgung wieder. Eine Aufschlüsselung nach Verteilung dieser fossilen Energieträger auf die Strom- und Wärmeerzeugung, aber auch auf andere Bereiche wie z. B. die Industrie, zeigt die Tabelle. Hinweise und Ideen:Diagramm und Tabelle geben den Schülern und Schülerinnen einen Überblick, wozu und in welchem Umfang fossile Energieträger im Jahr 2012 verwendet wurden. Überlegungen zur Endlichkeit dieser Energieträger und zum Umstieg bzw. zur Ausweitung der Nutzung regenerativer Energieträger lassen sich anschließen. Weitere Informationen findet man in der Sachinformation “Energieträger im Überblick” und der Grafik “Wie lange reichen unsere Energieträger?”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Chemische Energie

Diagramm: Chemische Energie als Bindungsenergie zwischen Atomen in der Darstellung als Potenzialkurve.Sowohl in der Bindung von Atomen und Molekülen als auch in der Möglichkeit (Potenzial) zur chemischen Bindung steckt chemische Energie. Diese kann bei der Bildung oder beim Zerfall der Bindungen in Form von Wärme frei werden. Diese “Reaktionswärme” wird auch als Reaktionsenthalpie (H) bezeichnet. Wird Wärme frei (dH < 0), so spricht man von einer exothermen Reaktion, wird Wärme verbraucht (dH > 0) von einer endothermen. Jedes Gemisch von Ausgangsstoffen, das zu Endstoffen reagieren kann, ist also als ein Potenzial an chemischer Energie aufzufassen. Mikroskopisch steckt diese chemische Energie in den Bindungen zwischen einzelnen Atomen, wie es anhand der Potenzialkurve illustriert wird. Hinweise und Ideen:Chemische Energie ist eine Energieform, die sich gut speichern lässt - sei es im menschlichen Körper oder in Batterien und Akkus. Ein weiteres Beispiel ist Wasserstoff als chemischer Energiespeicher für regenerative Energien.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Speicher für elektrische Energie

Übersichtsgrafik:Es werden Beispiele für direkte und indirekte Speicher elektrischer Energie gezeigt und es wird die gespeicherte Energieform benannt.Elektrische Energie sollte möglichst genau zu dem Zeitpunkt erzeugt werden, an dem sie auch gebraucht wird. Denn elektrische Energie lässt sich nur schlecht und mit hohen Kosten speichern. Man unterscheidet direkte und indirekte Speicher für elektrische Energie. Direkt lässt sich elektrische Energie nur in Kondensatoren speichern. Bei der indirekten Speicherung muss die elektrische Energie in eine andere Energieform umgewandelt werden, die dann gespeichert werden kann. Hinweise und Ideen:Die Schülerinnen und Schüler sollen sich Gedanken über die wirtschaftliche Nutzung der gezeigten Energiespeicher machen (z. B.: Wie viel Energie kann gespeichert werden? Ist der Energiespeicher problemlos einsetzbar? Wo treten Verluste auf?).

Bild

Siemens Stiftung

Anregungsenergie eines Wassermoleküls

Diagramm:Wasser kann in Form der Schwingungen bzw. der Bewegung seiner Moleküle Wärmeenergie aufnehmen. Dieser Energieinhalt hängt vom Aggregatzustand ab: Wasserdampf enthält z. B. mehr Energie als flüssiges Wasser.Die uns umgebende Materie nimmt je nach Druck und Temperatur (in Kelvin) verschiedene Aggregatzustände an: fest, flüssig oder gasförmig. Das gilt auch für Wasser: Beim Übergang von fest nach flüssig bzw. flüssig nach gasförmig nimmt die Energie der Wassermoleküle zu, ohne dass dabei die Temperatur ansteigt. Dies entspricht den beiden Plateaus im Diagramm. Die “Breiten” der Plateaus liegen bei ca. 6 kJ/mol (Schmelzwärme) und ca. 40,7 kJ/mol (Verdampfungswärme).Hinweise und Ideen:Eignet sich gut zur Erläuterung des Themas Phasengleichgewicht.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Hochspannungs-Gleichstrom-Übertragung (HGÜ)

%chemagrafik:Schematische Darstellung der Stromumwandlungsstufen bei der Hochspannungs-Gleichstrom-Übertragung (HGÜ) vom Produktionsort zum Mittelspannungsnetz des lokalen Netzes.Um Strom als Hochspannungs-Gleichstrom übertragen zu können, muss er sowohl transformiert als auch gleichgerichtet werden. Nach der Übertragung wird er mit Stromrichter wieder zu Wechselstrom gewandelt. Als Gleich- und Wechselrichter verwendet man Thyristoren. Die Fotos zeigen in der Starkstromtechnik verwendete Transformatoren und Thyristoren.Mit der Hochspannungs-Gleichstrom-Übertragung (HGÜ) lassen sich Strecken über Land (Freileitungen) ab ca. 1.000 km Länge und unter Wasser (Seekabel) ab ca. 60 km wirtschaftlicher überbrücken als mit Wechselstrom. Gleichstrom hat gegenüber dem Wechselstrom den Vorteil, dass er keine Wirbelströme verursacht und somit den vollen Leitungsquerschnitt nutzt. Aufgrund des niedrigeren Widerstands bei gleichem Querschnitt sind die Wärmeverluste geringer.Übrigens: Leistungsverluste sind bei Wechselspannung unter Wasser deshalb höher als in der Luft oder in der Erde, weil bei Tiefseekabeln keine Ausgleichselemente (Spulen, Kondensatoren) gegen induktive und kapazitive Verluste eingesetzt werden können.Hinweise und Ideen:Was verwendete man früher als Gleichrichter?Unter Verwendung der Quelle: https://de.wikipedia.org/wiki/Hochspannungs-Gleichstrom-%C3%9Cbertragun%

Medientypen

Bild

Lernalter

16-18

Schlüsselwörter

Diagramm Energieversorgung Physik

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Schnecke - Übersicht

Grafik, beschriftet: Die Hörschnecke mit Lage von Vorhof, ovalem Fenster und rundem Fenster. Zur Zuordnung der Ein- und Austrittsöffnungen für den Schall.Die Cochlea besteht aus einem gewundenen Gang, der im Querschnitt dreiteilig erscheint. Der aufwärts führende Teil heißt Vorhoftreppe und beginnt am ovalen Fenster. Zwischen den beiden Treppen befindet sich ein häutiger Schlauch, der mit Flüssigkeit gefüllt ist. In diesem befindet sich das eigentliche Hörorgan, das cortische Organ.Hinweise und Ideen:Einsetzbar in einem Arbeitsblatt, zur gemeinsamen Erarbeitung über den Beamer oder als Overhead-Folie.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Bau und Leistung eines SinnesorgansReizaufnahme und InformationsübermittlungSinnesleistungen.

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Anatomie (Mensch) Diagramm Ohr

Sprachen

Deutsch

Bild

Siemens Stiftung

Innenohr - Lage im Schädelknochen

Übersichtsgrafik: Die Lage des Innenohrs im Schädelknochen.Das Innenohr liegt in keiner Knochenhöhle, sondern es ist als “knöchernes Labyrinth” nahtlos im Felsenbein eingebettet. Das Felsenbein ist selbst wieder Bestandteil des Schläfenbeins. Hinweise und Ideen:Vom Einfachen zum Komplexen: Das eigentliche Hörorgan, das in der Schnecke des Innenohrs liegt, ist recht komplex. Es ist also sicher von Vorteil, wenn der Schüler zunächst eine Vorstellung bekommt, wo und wie das Innenohr im Schädel liegt. Unterrichtsbezug:Bau und Leistung eines SinnesorgansReizaufnahme und InformationsübermittlungSinnesleistungen.

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Anatomie (Mensch) Diagramm Ohr

Sprachen

Deutsch

Bild

Siemens Stiftung

Schwingungen und Wellen

Übersichtsgrafik:Die wichtigsten Kenngrößen von Schwingungen und Wellen im Überblick.Elektromagnetische Wellen sind Schwingungen der elektrischen und magnetischen Feldstärke, die sich räumlich mit Lichtgeschwindigkeit fortpflanzen. Die Kenngrößen der Schwingungen und Wellen, wie z. B. die Frequenz, werden hier in der Übersicht gezeigt.Hinweise und Ideen:Als Überblicksinformation für die Schülerinnen und Schüler zum Thema “Schwingungen und Wellen”. Wichtige Grundlage für das Verständnis der Schallwellen in der Akustik.

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Diagramm Optik Schall Welle (Physik)

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung