Bild

Siemens Stiftung

Phasendiagramm von Wasser

Diagramm:p-T-Diagramm des reinen Wassers. Die Linien geben an, bei welcher Temperatur und welchem Druck die Phasen fest, flüssig und gasförmig miteinander im Gleichgewicht stehen. Nur am Tripelpunkt sind alle drei Phasen im Gleichgewicht, sonst sind es maximal zwei.Das Diagramm enthält neben den Gleichgewichtskurven (Schmelzdruckkurve, Sublimationskurve, Dampfdruckkurve) auch die Druck- und Temperaturangaben für Schmelz-, Siede-, Tripel- und kritischen Punkt.Achtung: Die Achsen des Diagramms sind nicht maßstabsgetreu gezeichnet.Hinweise und Ideen:In diesem Diagramm spiegelt sich auch die Dichte-Anomalie des Wassers (im festen Zustand niedrigere Dichte als im flüssigen Zustand) wider: Die Schmelzdruckkurve weist eine negative Steigung auf. Grund für die Dichte-Anomalie sind die Wasserstoffbrückenbindungen.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energieträger regenerativ

Übersichtsgrafik: Abbildung der regenerativen Energieträger Sonne, Wind, Wasser, Erdwärme und Biomasse mit je einer exemplarischen Kraftwerkslösung.Regenerative Energien sind nach menschlichen Maßstäben unerschöpflich, da sie sich sozusagen von selbst erneuern. Sie stellen aufgrund ihrer deutlich geringeren Werte bei der Kohlendioxidemission eine Alternative zu fossilen Energieträgern dar. Jeder regenerative Energieträger wird mit einer spezifischen Nutzung in Kraftwerken kombiniert dargestellt: Energieträger Sonne und Solarthermieanlage, Energieträger Wind und Windrad, Energieträger Wasser und Flusskraftwerk, Energieträger Erdwärme und Geothermiekraftwerk, Energieträger Biomasse und Biomassekraftwerk.Hinweise und Ideen:Die Schülerinnen und Schüler erhalten mit dem Schaubild einen Überblick über regenerative Energieträger. Gleichzeitig wird eine Verbindung zu den Energieumwandlungstechnologien hergestellt. Das Schaubild kann als Einstieg in das Thema regenerative Energien und gleichzeitig als Ausgangspunkt für eine Auseinandersetzung mit Energiequellen, Energieumwandlern sowie Umwelt und Ökologie dienen. Ausführliche Informationen findet man im Leitfaden “Regenerative Energien”.


Bild

Siemens Stiftung

Energiequellen für elektrischen Strom

Schemagrafik:Übersicht über die Umwandlungspfade von verschiedenen Energiequellen hin zu elektrischem Strom.Um die in nuklearen, regenerativen und fossilen Energieträgern enthaltenen Energieformen für den Menschen nutzbar zu machen, müssen sie in eine andere Energieform umgewandelt werden, z. B. in elektrische Energie (“Strom”). Von den hier gezeigten Energieträgern ist bei Kernenergie, nachwachsenden und fossilen Brennstoffen sowie Geo- und Solarthermie eine direkte Umwandlung in elektrische Energie nicht möglich. Daher müssen mehrere Umwandlungsschritte hintereinandergeschaltet werden. Die beiden letzten Schritte sind die Umwandlung von thermischer in mechanische Energie in der Turbine und die Umwandlung von mechanischer in elektrische Energie im Generator.Wasser- und Windkraft können direkt einen Generator antreiben und Photovoltaik erzeugt direkt elektrische Energie. Hinweise und Ideen:Sehr gut geeignet, um das Gesetz von der Erhaltung der Energie zu erläutern. Dass Energie nicht erzeugt, sondern nur umgewandelt werden kann, ist den Schülern nicht selbstverständlich.


Bild

Siemens Stiftung

Magnetische Energie

Übersichtsgrafik:Zwei Erscheinungsformen magnetischer Energie werden gegenübergestellt: die magnetische Energie einer stromdurchflossenen Spule und die eines Elementarmagneten.Magnetische Energie ist die Energie, die in einer stromdurchflossenen Spule in Form ihres Magnetfelds gespeichert ist. Sie resultiert aus der Arbeit, die der Strom gegen die induzierte Spannung (Faraday’sches Induktionsgesetz) verrichten muss. Umgekehrt wird diese magnetische Energie wieder als Strom frei, wenn das Magnetfeld abgebaut wird. Auch in einem magnetisierten Stoff ist magnetische Energie gespeichert: Sie entspricht der Arbeit, die aufzuwenden ist, um die magnetische Dipole dieses Stoffs in einem äußeren magnetischen Feld auszurichten. In ferromagnetischen Materialien richten sich die magnetischen Dipole in kleinen Bereichen (“Weiߒsche Bezirke”) auch ohne äußeres Magnetfeld aneinander aus. Richtet man nun die Weiß'schen Bezirke durch ein äußeres Magnetfeld aus, erhält man einen Permanentmagneten. Übrigens: Erhitzt man einen Permanentmagneten, so verliert er oberhalb einer kritischen Temperatur seine Magnetisierung. Die magnetische Energie wird bei dieser sog. Curie-Temperatur als zusätzliche Wärme frei.Hinweise und Ideen:Ein einfaches Experiment zur Magnetisierung: Ein Permanentmagnet magnetisiert durch Darüberstreichen einen Eisennagel. Welche Arbeit muss außer der Reibungsarbeit dabei aufgewendet werden? Wird dabei der Permanentmagnet bzw. dessen magnetische Energie “verbraucht”?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Primärenergie-Verbrauch weltweit

Diagramm:Primärenergie-Verbrauch weltweit im Jahr 2012.Diagramm:Ein Balkendiagramm gibt den Umfang des Primärenergie-Verbrauchs in Millionen Tonnen Rohöleinheiten (tRÖE) einzelner Weltregionen an und deren prozentualen Anteil am Weltenergie-Verbrauch. Hinweise und Ideen:Für ein Kurzreferat eignen sich die Fragen: Wer oder was ist die OECD? Was für Ziele hat sie? Welche Länder sind OECD-Mitglied?Unter Verwendung der Quelle: International Energy Agency (IEA)

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Diagramm Energie Ökologie

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Zukünftiger weltweiter Primärenergiebedarf

%iagramm:Prognostizierte Entwicklung des Primärenergiebedarfs weltweit, differenziert nach Industrieländern und noch nicht voll entwickelten Ländern.Das Diagramm beschreibt den weltweiten jährlichen Bedarf an Primärenergieträgern im Zeitraum von 2000 bis 2150 (Abschätzung aus dem Jahr 2002). Der Primärenergiebedarf wird in der Einheit 1013 kWh/Jahr angegeben und berücksichtigt die Entwicklung der Bevölkerungszahlen und des Bruttosozialprodukts pro Kopf bei zunehmender Industrialisierung. Das Diagramm zeigt deutlich, dass das Wachstum nicht unbegrenzt ist.Übrigens: In Deutschland ist der Primärenergieverbrauch seit 1990 nahezu konstant, obwohl sich das Bruttoinlandsprodukt seit dieser Zeit um ca. 27 % erhöht hat.Hinweise und Ideen:Ausgehend von dieser Prognose können Überlegungen angestellt werden, welche Folgen sich daraus für fossile Energieressourcen und regenerative Energieträger ergeben könnten. Wie sehen die Prognosen für die Entwicklung der Weltbevölkerung und des Bruttosozialprodukts pro Kopf aus? Informationen hierzu findet man in der Studie von Prof. D. Pelte der Universität Heidelberg%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Chemische Energie

Diagramm: Chemische Energie als Bindungsenergie zwischen Atomen in der Darstellung als Potenzialkurve.Sowohl in der Bindung von Atomen und Molekülen als auch in der Möglichkeit (Potenzial) zur chemischen Bindung steckt chemische Energie. Diese kann bei der Bildung oder beim Zerfall der Bindungen in Form von Wärme frei werden. Diese “Reaktionswärme” wird auch als Reaktionsenthalpie (H) bezeichnet. Wird Wärme frei (dH < 0), so spricht man von einer exothermen Reaktion, wird Wärme verbraucht (dH > 0) von einer endothermen. Jedes Gemisch von Ausgangsstoffen, das zu Endstoffen reagieren kann, ist also als ein Potenzial an chemischer Energie aufzufassen. Mikroskopisch steckt diese chemische Energie in den Bindungen zwischen einzelnen Atomen, wie es anhand der Potenzialkurve illustriert wird. Hinweise und Ideen:Chemische Energie ist eine Energieform, die sich gut speichern lässt - sei es im menschlichen Körper oder in Batterien und Akkus. Ein weiteres Beispiel ist Wasserstoff als chemischer Energiespeicher für regenerative Energien.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Strahlungsenergie

Diagramm:Formeln für die Strahlungsenergie elektromagnetischer Wellen und das Planck'sche Strahlungsgesetz.Strahlungsenergie ist die Energie elektromagnetischer Wellen. Sie ist proportional zum Quadrat der Amplitude der elektrischen bzw. der magnetischen Feldstärke. Elektromagnetische Wellen hoher Frequenz und damit Energie haben Teilchencharakter. Die Energie dieser Teilchen ist proportional zur Frequenz bzw. umgekehrt proportional zu ihrer Wellenlänge. Der Proportionalitätsfaktor ist das Planck’sche Wirkungsquantum h. Dass Strahlungsenergie quantisiert sein muss, fand Max Planck bei der Untersuchung der Strahlung schwarzer Körper. Er formulierte ein Strahlungsgesetz, das aber erst durch Einsteins Postulat von den Lichtquanten erklärt werden konnte. Zahlenbeispiel für die Planck’sche Strahlungsformel:Die Sonne hat eine Oberflächentemperatur von 5.800 K, die damit verbundene Strahlungsleistung ist nach der Planck’schen Strahlungsformel 3,85 x 1023 kW. Davon trifft nur ein sehr kleiner Anteil auf die Erde (bei senkrechtem Strahlungseinfall 1,37 kW/m²).Hinweise und Ideen:Strahlungsenergie kann vielfach in andere Energieformen umgewandelt werden: Beim Röntgen wird die Strahlungsenergie in chemische Energie verwandelt (Schwärzung des Fotofilms), Licht wird in der Solarzelle in elektrische Energie umgewandelt, ebenso Funkwellen in einer Antenne. Die Energie von Mikrowellen kann man zur Erwärmung von Speisen verwenden.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Fakten zur Sonnenenergie

%?bersichtsgrafik:Schematische Darstellung des Energieflusses von der Sonne zur Erde: Wie viel Energie produziert die Sonne und wie viel davon kommt auf der Erdoberfläche an?Die Sonne ist der Hauptenergielieferant der Erde, sie liefert etwa 99,98 % des gesamten Energiebeitrags zum Erdklima. Welch großes Potenzial in der technischen Nutzung der Sonnenenergie als Energiequelle steckt, wird dadurch deutlich, dass der derzeitige Weltenergieverbrauch nur 0,006 % der eingestrahlten Sonnenenergie beträgt. Die Grafik gibt einen Überblick über die von der Sonne abgestrahlten und auf der Erde ankommenden Energiemengen. Zu beachten ist, dass die von der Sonne eingestrahlte Energie letztlich zu 100 % wieder von der Erde zurück in den Weltraum abgestrahlt wird. Die Energiebilanz der Erde ist in allen Ebenen von der Erdoberfläche bis zum Weltraum ausgeglichen. Doch Achtung: Ein minimaler Bruchteil der eingestrahlten Energie wird durch die Photosynthese (ca. 0,1 %) oder durch menschliche Aktivitäten (ca. 0,005 %) gespeichert und verbleibt längerfristig auf der Erde.Hinweise und Ideen:Um die Anschaulichkeit zu erhöhen, sind hier die Größenverhältnisse von Sonne und Erde nicht maßstabsgetreu umgesetzt. Es ist berücksichtigt, dass letztlich 100 % der eingestrahlten Energie wieder ins Weltall zurückgestrahlt werden%


Dieses Material ist Teil einer Sammlung