Bild

Siemens Stiftung

Spracherkennung: Satz, Wort und Phonem

Diagramm:Die Bausteine der Sprache, vom Phonem zum Satz visuell dargestellt.Die Grafik zeigt die Oszilloskop-Kurve des gesprochenen Satzes “It's raining cats and dogs” sowie ausschnittsweise die Einheiten, aus denen sich die Sprache zusammensetzt: Satz, Wort und Phonem.Hinweise und Ideen:Spracherkennung und Sprachsynthese sind ganz aktuelle Themen in der Kommunikations- und Informationstechnik.Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Der menschliche KörperBau und Leistung eines SinnesorgansReizaufnahme und InformationsübermittlungSinnesleistungen

Bild

Siemens Stiftung

Schallbrechung

Schemagrafik:Schallbrechung in Luft mit unterschiedlichen Temperaturschichten (von warm nach kalt).Die Schallgeschwindigkeit in Luft hängt von der Dichte und damit auch von der Temperatur ab: bei hohen Temperaturen ist der Schall schneller als bei niedrigen. Beim Übergang von einer warmen in eine kältere Luftschicht nimmt die Schallgeschwindigkeit also ab. Mit der Geschwindigkeit ändert sich aber auch die Ausbreitungsrichtung. Man sagt, die Schallwelle wird “gebrochen”. Im beschriebenen Fall, also beim Übergang von warmer nach kalter Luftschicht, wird die Schallwelle nach oben hin gebrochen.Hinweise und Ideen:Wie verhält sich der Schall, wenn er von einer kälteren in eine wärmere Schicht dringt?Ist es richtig, dass man gegen den Wind schlechter hört als mit dem Wind?Letzteres kann gemeinsam mit den Schülerinnen und Schülern im Versuch nachgeprüft werden.Ein Vergleich mit der Brechung von Lichtstrahlen bietet sich an.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Bild

Siemens Stiftung

Temperaturabhängigkeit der Dichte

Diagramm: Dichte-Temperatur-Verlauf bei Wasser im Vergleich zu Benzol; Gegenüberstellung veranschaulicht die Dichteanomalie des Wassers.Bei den meisten Stoffen gilt als kontinuierlicher Verlauf: je höher die Temperatur, desto niedriger die Dichte der Substanz. Bei Phasenübergängen (Gas -> Flüssigkeit -> Feststoff) ändert sich die Dichte um diesen Temperaturbereich drastisch. Bei Wasser tritt jedoch ein Dichtesprung um den Gefrierpunkt auf. Die Dichte nimmt nicht zu, sondern entgegen den Erwartungen ab. Im Gegensatz dazu zeigt die Grafik den Dichte-Temperatur-Verlauf bei “normalen” Stoffen (hier Benzol). Hinweise und Ideen:Woher könnte dieses Verhalten kommen?Welche praktische Bedeutung hat diese Anomalie des Wassers?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Zukünftiger weltweiter Primärenergiebedarf

%iagramm:Prognostizierte Entwicklung des Primärenergiebedarfs weltweit, differenziert nach Industrieländern und noch nicht voll entwickelten Ländern.Das Diagramm beschreibt den weltweiten jährlichen Bedarf an Primärenergieträgern im Zeitraum von 2000 bis 2150 (Abschätzung aus dem Jahr 2002). Der Primärenergiebedarf wird in der Einheit 1013 kWh/Jahr angegeben und berücksichtigt die Entwicklung der Bevölkerungszahlen und des Bruttosozialprodukts pro Kopf bei zunehmender Industrialisierung. Das Diagramm zeigt deutlich, dass das Wachstum nicht unbegrenzt ist.Übrigens: In Deutschland ist der Primärenergieverbrauch seit 1990 nahezu konstant, obwohl sich das Bruttoinlandsprodukt seit dieser Zeit um ca. 27 % erhöht hat.Hinweise und Ideen:Ausgehend von dieser Prognose können Überlegungen angestellt werden, welche Folgen sich daraus für fossile Energieressourcen und regenerative Energieträger ergeben könnten. Wie sehen die Prognosen für die Entwicklung der Weltbevölkerung und des Bruttosozialprodukts pro Kopf aus? Informationen hierzu findet man in der Studie von Prof. D. Pelte der Universität Heidelberg%


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Was sind regenerative Energieträger?

Grafik und Diagramm:Die Definition des Begriffs “regenerative Energieträger” wird visualisiert.Per definitionem versteht man unter einem regenerativen Energieträger entweder einen nachwachsenden Energieträger - die Biomasse - oder einen nach menschlichem Ermessen unerschöpflichen Energieträger (wie die Sonne oder die Geothermie). Da Wind- und Wasserkraft durch den Einfluss der Sonne bedingt sind, werden auch sie zu den unerschöpflichen Energieträgern gezählt. Hinweise und Ideen:Das Medium eignet sich sehr gut als Einstieg in das Thema “Regenerative Energien”.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Primärenergie-Verbrauch weltweit

Diagramm:Primärenergie-Verbrauch weltweit im Jahr 2012.Diagramm:Ein Balkendiagramm gibt den Umfang des Primärenergie-Verbrauchs in Millionen Tonnen Rohöleinheiten (tRÖE) einzelner Weltregionen an und deren prozentualen Anteil am Weltenergie-Verbrauch. Hinweise und Ideen:Für ein Kurzreferat eignen sich die Fragen: Wer oder was ist die OECD? Was für Ziele hat sie? Welche Länder sind OECD-Mitglied?Unter Verwendung der Quelle: International Energy Agency (IEA)

Medientypen

Bild

Lernalter

11-18

Schlüsselwörter

Diagramm Energie Ökologie

Sprachen

Deutsch

Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Energiesparen als Energiequelle

Schemagrafik:Diese Übersicht zeigt anhand ausgewählter Beispiele, dass Energiesparen selbst als “Energiequelle” bezeichnet werden kann.Anhand von fünf Beispielen aus dem Alltag (Strom- und Wärmeerzeugung, Energieverteilung, Bauwesen, Beleuchtung, Verkehr) wird gezeigt, wie Energiesparen den Verbrauch einzelner Energieträger (primär oder sekundär) schont. Hinweise und Ideen:Die Schülerinnen und Schüler können nach weiteren Beispielen suchen. Welche Bedeutung kommt dem Energiesparen in Bezug auf die allgemeine Verknappung der Ressourcen zu? Kann es etwa mit der Erschließung regenerativer Energiequellen gleichgesetzt werden?


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Schallbeugung

Schemagrafik:Beugung ist eine typische Verhaltensweise von Schallwellen, wenn sie auf ein Hindernis treffen.Die Beugung von Schallwellen ist ein physikalischer Mechanismus, der für das Eindringen von Schallenergie in akustische Schatten sorgt. Das heißt der Schall ist auch in Bereichen hörbar, die vom direkten Schalleinfall abgeschattet sind, wie etwa hinter Hindernissen. Hinweise und Ideen:Die Beugung des Lichts lässt sich nachweisen, wenn ein paralleles Strahlenbündel einfarbigen Lichts auf einen engen Spalt gerichtet wird. Ein hinter dem Spalt aufgestellter Schirm gibt eine Beugungsfigur (helle und dunkle Streifen, die nach außen an Intensität verlieren).Beim Schall ist ein direkter Bezug zur Alltagswelt der Schüler noch besser möglich: Warum kann man die vor einem Gebäude verlaufende Straße hören, obwohl man dahinter steht?Weitere inhaltliche Informationen zu dieser Grafik gibt es als Sachinformation auf dem Medienportal der Siemens Stiftung.Unterrichtsbezug:Schall/Akustik: KenngrößenSchwingungen und Wellen

Medientypen

Bild

Lernalter

13-18

Schlüsselwörter

Diagramm Optik Schall Welle (Physik)

Sprachen

Deutsch

Bild

Siemens Stiftung

Strahlungsenergie

Diagramm:Formeln für die Strahlungsenergie elektromagnetischer Wellen und das Planck'sche Strahlungsgesetz.Strahlungsenergie ist die Energie elektromagnetischer Wellen. Sie ist proportional zum Quadrat der Amplitude der elektrischen bzw. der magnetischen Feldstärke. Elektromagnetische Wellen hoher Frequenz und damit Energie haben Teilchencharakter. Die Energie dieser Teilchen ist proportional zur Frequenz bzw. umgekehrt proportional zu ihrer Wellenlänge. Der Proportionalitätsfaktor ist das Planck’sche Wirkungsquantum h. Dass Strahlungsenergie quantisiert sein muss, fand Max Planck bei der Untersuchung der Strahlung schwarzer Körper. Er formulierte ein Strahlungsgesetz, das aber erst durch Einsteins Postulat von den Lichtquanten erklärt werden konnte. Zahlenbeispiel für die Planck’sche Strahlungsformel:Die Sonne hat eine Oberflächentemperatur von 5.800 K, die damit verbundene Strahlungsleistung ist nach der Planck’schen Strahlungsformel 3,85 x 1023 kW. Davon trifft nur ein sehr kleiner Anteil auf die Erde (bei senkrechtem Strahlungseinfall 1,37 kW/m²).Hinweise und Ideen:Strahlungsenergie kann vielfach in andere Energieformen umgewandelt werden: Beim Röntgen wird die Strahlungsenergie in chemische Energie verwandelt (Schwärzung des Fotofilms), Licht wird in der Solarzelle in elektrische Energie umgewandelt, ebenso Funkwellen in einer Antenne. Die Energie von Mikrowellen kann man zur Erwärmung von Speisen verwenden.


Dieses Material ist Teil einer Sammlung

Bild

Siemens Stiftung

Chemische Energie

Diagramm: Chemische Energie als Bindungsenergie zwischen Atomen in der Darstellung als Potenzialkurve.Sowohl in der Bindung von Atomen und Molekülen als auch in der Möglichkeit (Potenzial) zur chemischen Bindung steckt chemische Energie. Diese kann bei der Bildung oder beim Zerfall der Bindungen in Form von Wärme frei werden. Diese “Reaktionswärme” wird auch als Reaktionsenthalpie (H) bezeichnet. Wird Wärme frei (dH < 0), so spricht man von einer exothermen Reaktion, wird Wärme verbraucht (dH > 0) von einer endothermen. Jedes Gemisch von Ausgangsstoffen, das zu Endstoffen reagieren kann, ist also als ein Potenzial an chemischer Energie aufzufassen. Mikroskopisch steckt diese chemische Energie in den Bindungen zwischen einzelnen Atomen, wie es anhand der Potenzialkurve illustriert wird. Hinweise und Ideen:Chemische Energie ist eine Energieform, die sich gut speichern lässt - sei es im menschlichen Körper oder in Batterien und Akkus. Ein weiteres Beispiel ist Wasserstoff als chemischer Energiespeicher für regenerative Energien.


Dieses Material ist Teil einer Sammlung