Suchergebnis für: ** Zeige Treffer 1 - 10 von 45

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen, Beispiel 3 | A.30.03

Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die Verdopplungszeit (bei exponentieller Zunahme) bzw. die Halbwertszeit (bei exponentielles Abnahme). Egal wann man mit der Messung beginnt, es dauert bei jedem Vorgang immer gleich lang, bis sich der Bestand verdoppelt (bzw. halbiert) hat. Exponentielles Wachstum wird durch die Funktionsgleichung f(t)=a*e^(kt) beschrieben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 1 | A.30.04

Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl “k” heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum auf.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum berechnen, Beispiel 1 | A.30.05

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Hierbei handelt es sich um den Wert, um welchen der Bestand überhaupt noch zunehmen kann, also um die Differenz zwischen Grenze und aktuellem Bestand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum berechnen, Beispiel 6 | A.30.05

Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort “Sättigungsmanko”. Hierbei handelt es sich um den Wert, um welchen der Bestand überhaupt noch zunehmen kann, also um die Differenz zwischen Grenze und aktuellem Bestand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.06

Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des Bestands proportional zum Sättigungsmanko ist. Die Parameter “k” und “G” tauchen auch in der Funktionsgleichung auf und heißen: k=Wachstumsfaktor=Proportionalitätsfaktor, G=Grenze=S=Schranke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 6 | A.30.06

Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des Bestands proportional zum Sättigungsmanko ist. Die Parameter “k” und “G” tauchen auch in der Funktionsgleichung auf und heißen: k=Wachstumsfaktor=Proportionalitätsfaktor, G=Grenze=S=Schranke.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.30.02

Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineares Wachstum berechnen, Beispiel 2 | A.30.01

Das lineare Wachstum ist sehr, sehr einfach. Es handelt sich hierbei einen Bestand mit einer gleichmäßigen Entwicklung, es kommt also in jeder Zeitspanne immer die gleiche Menge dazu (oder geht weg). Das lineare Wachstum wird durch eine Gerade beschrieben, der Ansatz lautet also: B(t)=m*t+b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Exponentielles Wachstum berechnen | A.30.03

Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die Verdopplungszeit (bei exponentieller Zunahme) bzw. die Halbwertszeit (bei exponentielles Abnahme). Egal wann man mit der Messung beginnt, es dauert bei jedem Vorgang immer gleich lang, bis sich der Bestand verdoppelt (bzw. halbiert) hat. Exponentielles Wachstum wird durch die Funktionsgleichung f(t)=a*e^(kt) beschrieben.