Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer ganzrationalen Funktion erstellen, Beispiel 1 | A.46.06

Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als Notlösung in Frage. Sie werden hauptsächlich Fall 2) begegnen. Auch wir werden uns in diesem Unterkapitel dem Fall 2) widmen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 2

Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über Bedingungen aufstellen (siehe Kap.3.6.5).


Dieses Material ist Teil einer Sammlung

Simulation, Werkzeug

Prof. Dr. Jürgen Roth

GeoGebra: Bußgeldfunktion

Der AK GeoGebra hat einige interaktive Konstruktionen zum Download zusammengestellt. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen. Die vorliegende Serie von Arbeitsblättern hat folgende Ziele: ... Funktionsgraphen anhand von Vorgaben zeichnen und verstehen ... eventuelle Fehlvorstellungen korrigieren ... den Horizont zu erweitern

Video

Havonix Schulmedien-Verlag

Normalparabel zeichnen - A.04.02

Eine Normalparabel kann man natürlich zeichnen, in dem man eine Wertetabelle erstellt, die Punkte einzeichnet und dann zu einer Parabelform verbindet. (Mit der Methode kann man alle Funktionen und alle Parabeln zeichnen). Geschickter ist es jedoch, den Scheitelpunkt zu berechnen (siehe z.B. Kap.A.04.04) und dann von diesem Scheitelpunkt aus die Normalparabel aus zu zeichnen. Das macht man entweder mit einer Schablone oder man muss halt wissen wie die Form einer Normalparabel aussieht (siehe Beispielfilme). Steht vor dem "x²" ein Minus, ist die Normalparabel nach unten geöffnet, steht von dem "x²" ein Plus, ist sie nach oben geöffnet.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen höherer Potenz, Beispiel 6 | A.26.03

Eine “höhere Ungleichung” oder besser eine “Ungleichung höherer Potenz” ist eine Ungleichung, in welcher höhere Potenzen von “x” auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Schaubild einer ganzrationalen Funktion erstellen | A.46.06

Wenn man eine Parabel zeichnen soll, kann man: 1).Eine ausführliche Wertetabelle machen. 2).Kennt man genau so viele Nullstellen der Funktion wie ihr Grad, kann man die Funktion meist recht einfach zeichnen. 3).Eine Funktionsanalyse (=Kurvendiskussion) machen. Fall 1) will normalerweise kein Korrektor/Prüfer bei Ihnen sehen. Fall 3) ist umständlich und kommt daher nur als Notlösung in Frage. Sie werden hauptsächlich Fall 2) begegnen. Auch wir werden uns in diesem Unterkapitel dem Fall 2) widmen.


Dieses Material ist Teil einer Sammlung

Text

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 1

Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über Bedingungen aufstellen (siehe Kap.3.6.5).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel zeichnen mit Wertetabelle, Beispiel 1 | A.04.01

Jede Funktion (auch Parabeln) kann man über eine Wertetabelle zeichnen. Man setzt also irgendwelche x-Werte in die Parabelgleichung ein und erhält die zugehörigen y-Werte. x- und y-Werte zeichnet man als Punkte ein, verbindet sie und hat die Parabel gezeichnet. Wenn nichts anders angegeben ist, stellt man die Wertetabelle für die x-Werte von -3 bis 3 auf, das ist normalerweise ein ganz guter Ansatz. Falls es sich nicht um eine beliebige Parabel handelt, sondern um eine Normalparabel, kann man die Parabel zeichnen, in dem man den Scheitelpunkt einzeichnet und da die Schablone aufsetzt (siehe nächstes Kapitel).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel zeichnen mit Wertetabelle, Beispiel 3 | A.04.01

Jede Funktion (auch Parabeln) kann man über eine Wertetabelle zeichnen. Man setzt also irgendwelche x-Werte in die Parabelgleichung ein und erhält die zugehörigen y-Werte. x- und y-Werte zeichnet man als Punkte ein, verbindet sie und hat die Parabel gezeichnet. Wenn nichts anders angegeben ist, stellt man die Wertetabelle für die x-Werte von -3 bis 3 auf, das ist normalerweise ein ganz guter Ansatz. Falls es sich nicht um eine beliebige Parabel handelt, sondern um eine Normalparabel, kann man die Parabel zeichnen, in dem man den Scheitelpunkt einzeichnet und da die Schablone aufsetzt (siehe nächstes Kapitel).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen höherer Potenz, Beispiel 5 | A.26.03

Eine “höhere Ungleichung” oder besser eine “Ungleichung höherer Potenz” ist eine Ungleichung, in welcher höhere Potenzen von “x” auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:


Dieses Material ist Teil einer Sammlung