Suchergebnis für: ** Zeige Treffer 1 - 10 von 20

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 2 | A.11.01

Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur “Wert der Funktion” in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) | A.11.03

Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere Bedeutung. Setzt man f''(x)=0, erhält man den Wendepunkt.


Dieses Material ist Teil einer Sammlung

Simulation

MatheGuru

Übung: Logarithmen auswerten

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier finden Sie eine Übung zur Auswertung von Logarithmen.

Text

MatheGuru

Partialbruchzerlegung

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Partialbruchzerlegung ist ein Werkzeug, dass in vielen Bereichen der Mathematik Anwendung findet. Hier erfahren Sie mehr.

Video

Havonix Schulmedien-Verlag

Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 3 | A.11.01

Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur “Wert der Funktion” in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 1 | A.11.03

Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere Bedeutung. Setzt man f''(x)=0, erhält man den Wendepunkt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 1 | A.11.01

Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur “Wert der Funktion” in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 2 | A.11.02

Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02

Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 4 | A.11.03

Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere Bedeutung. Setzt man f''(x)=0, erhält man den Wendepunkt.


Dieses Material ist Teil einer Sammlung