Suchergebnis für: ** Zeige Treffer 1 - 10 von 75

Video

Havonix Schulmedien-Verlag

Trigonometrie | Stereometrie: Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale; Beispiel 2 | T.06.02

Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.


Dieses Material ist Teil einer Sammlung

Text

Prof. Dr. Jürgen Roth

DynaGeo: Zylinder mit minimaler Oberfläche

Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Rotationsvolumen berechnen, Beispiel 5 | A.18.06

Bei Rotation einer Funktion um die x-Achse, entsteht meist ein komischer Rotationskörper, der keinen Namen (was diesen natürlich psychisch sehr belastet). Diesen berechnet man mit einer einfachen Formel, die besagt, dass man die Funktion zuerst quadriert, dann erst integriert. Integralgrenzen einsetzen und das Ergebnis mit Pi multiplizieren. (Rotiert eine Funktion um die y-Achse, macht man das Gleiche mit der Umkehrfunktion. Dieses wird hier nicht erklärt.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rechnen können mit GTR / CAS - Übungen / Abituraufgabe 4 | A.29.05

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr “erstes Mal”. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine Funktionsanpassung, Hauptproblematik ist die Berechnung des Volumens in mehreren Varianten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 2 | A.21.02

Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder …). Es geht also um Anwendungen aus dem “Alltag”. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, offiziellen Namen. Übrigens vereinfacht bei diesen Aufgaben sehr häufig der Strahlensatz die Rechnung sehr stark. (Also: Strahlensatz am Start?!?)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analytische Geometrie (Vektoren): Volumen dreiseitige Pyramide berechnen über Kreuzprodukt, Beispiel 3 | V.07.04

Vier Punkte (die nicht alle in einer Ebene liegen) bilden eine dreiseitige Pyramide. Am häufigsten braucht man das Volumen davon. Das geht ziemlich schnell, wenn man die Formel über das Kreuzprodukt verwenden darf. Diese Formel heißt “Spatprodukt”. Einen beliebigen Eckpunkt aussuchen, von hier aus die drei ausgehenden Vektoren aufstellen. Mit zwei dieser Vektoren ein Kreuzprodukt bilden, mit dem Ergebnis davon und dem dritten Vektor das Skalarprodukt bilden. Das Ergebnis durch 6 teilen. Fertig. Geht schnell.


Dieses Material ist Teil einer Sammlung

Unterrichtsplanung

Universität Bayreuth - Didaktik der Chemie

Didaktik der Chemie: Ein "Kaputtmach-Versuch"

Der Bereich "Didaktik der Chemie" der Universität Bayreuth hält auf seinen Webseite eine Menge an Unterrichtsmaterialien und Versuchsbeschreibungen für viele Themen bereit.

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 1 | A.21.02

Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder …). Es geht also um Anwendungen aus dem “Alltag”. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, offiziellen Namen. Übrigens vereinfacht bei diesen Aufgaben sehr häufig der Strahlensatz die Rechnung sehr stark. (Also: Strahlensatz am Start?!?)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Volumen Kegel und Volumen Zylinder berechnen, Beispiel 3 | A.21.05

Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man also über die Differenz der x-Werte bzw. der y-Werte berechnet. Alles wird in die Volumenformel eingesetzt und das Maximum/Minimum berechnet. Schwuppdiwupp ist der größte Kegel (bzw. der größte Zylinder) da.


Dieses Material ist Teil einer Sammlung