Suchergebnis für: ** Zeige Treffer 1 - 10 von 145

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Hyperbel / Hyperbeln berechnen, Beispiel 5 | A.06.02

Eine Funktion, die im Nenner (unten) eines Bruchs ein “x” stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind “1/x”, “1/x²”,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer senkrechten Gerade an (oft x- und y-Achse). Diese Geraden heißen dann Asymptoten. Sie müssen in der Lage sein, diese Asymptoten heraus zu finden (ob Sie dabei den Begriff “Asymptoten” verwenden, ist unwichtig) und Sie sollten die Funktionen grob skizzieren können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 6 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 3 | A.06.03

Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte “x” in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, …) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren Aussehen. Sie müssen in der Lage sein, das Aussehen der Exponentialfunktionen grob zu erkennen. Eine weitere Fragestellung, der man bei Exponentialfunktionen häufig begegnet, ist Folgende: Von einer Funktion ist bekannt, dass sie die Form: y=a*b^x hat. Nun sind zwei Punkte gegeben und Sie müssen die Parameter “a” und “b” bestimmen.


Dieses Material ist Teil einer Sammlung

Simulation

MatheGuru

Übung: Gleichungen mit unbekannten Variablen

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier finden Sie eine Übung zu Gleichungen mit unbekannten Variablen.

Video, Website

BR alpha

Prüfungstipps (Mediabox)

Im fünften Teil gibt Sebastian Wohlrab zunächst einige Tipps, wie man Rechenfehler vermeiden kann Anschließend erklärt er zusammen mit seinem Team, wie man das Ergebnis einer Gleichung übeprüfen kann. Die Mediabox umfasst 12 Stationen: Film: Wie können Fehler vermieden werden?, Film: So kannst du Fehler vermeiden, Info: So vermeidest du Fehler, Film: Wie kann man das Ergebnis kontrollieren?, Übung 1: Mache die Probe, Film: Die Probe, Info: Die Probe, Film: Zusammenfassung, Übung 2: Überprüfe das Ergebnis, Übung 2: Die Probe, Übung 2: Gleichung lösen, Übung 2: Die Probe mit 3.

Video

Havonix Schulmedien-Verlag

Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 4 | A.53.05

Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die “spezielle Lösung” oder “partikuläre Lösung” zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die Störfunktion ist der Term ohne “f”, welcher die DGL inhomogen macht). Viel Glück!


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 2 | A.53.05

Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die “spezielle Lösung” oder “partikuläre Lösung” zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die Störfunktion ist der Term ohne “f”, welcher die DGL inhomogen macht). Viel Glück!


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 4 | A.53.02

Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: “dy/dx”, multipliziert die gesamte Gleichung mit “dx” und versucht nun auch im Folgenden, alle “x” auf eine Seite der Gleichung zu bringen, alle “y” auf die andere Seite der Gleichung. Im zweiten Schritt integriert man beide Seiten der Gleichung (die Integrationskonstante “+c” nicht vergessen!). Im Normalfall kann man nun nach y auflösen. Falls eine Anfangsbedingung gegeben ist (ein “x”-Wert und ein zugehöriger “y”-Wert) kann man diese in die Funktion einsetzen und erhält die Integrationskonstante “c” bestimmen. Dieses Verfahren nennt sich “Trennung der Variablen” oder “Variablentrennung”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 2 | A.53.04

Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ab: 1. ist die Lösung des charakteristischen Polynoms reell oder komplex? und 2. ist die Lösung einfach, doppelt, dreifach...


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 5 | Höhere Mathematik: Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 1 | A.51.03

Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht einfache Formel zur Berechnung.


Dieses Material ist Teil einer Sammlung