Suchergebnis für: ** Zeige Treffer 1 - 10 von 53

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 2 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Quadratische Ungleichungen, Beispiel 2 | A.26.02

Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher “x²” vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen höherer Potenz | A.26.03

Eine “höhere Ungleichung” oder besser eine “Ungleichung höherer Potenz” ist eine Ungleichung, in welcher höhere Potenzen von “x” auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen mit Brüchen | A.26.04

Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), … Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die Ungleichung stimmt. (Letzteres tut man, indem man für jedes Intervall eine Zahl aus diesem Intervall in die Ungleichung einsetzt und schaut, ob man eine wahre Aussage oder einen Widerspruch erhält.)


Dieses Material ist Teil einer Sammlung

Unterrichtsplanung

Deutsche Olympische Akademie Willi Daume e. V. (Doa)

Deutsche Olympische Akademie - Arbeitsmaterialien für die Primarstufe: Olympische Spiele Vancouver 2010

Auf der Seite der Deutschen Olympischen Akademie Willi Daume e. V. finden sich Unterrichtsmaterialien und Vorschläge rund um das Thema Olympia.


Dieses Material ist Teil einer Sammlung

Video

WDR (Köln)

Herzsymbol - Sachgeschichte Sendung mit der Maus

Sachgeschichte der Sendung mit der Maus zum Thema "Herzsymbol": Es wird erklärt, dass unser heutiges Herzsymbol ursprünglich auf Darstellungen von Blättern zurückgeht.

Bildungsbereiche

Allgemeinbildende Schule Primarstufe

Fach- und Sachgebiete

Sachkunde

Medientypen

Video

Schlüsselwörter

Herz Herzsymbol Symbol

Sprachen

Deutsch

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen höherer Potenz, Beispiel 5 | A.26.03

Eine “höhere Ungleichung” oder besser eine “Ungleichung höherer Potenz” ist eine Ungleichung, in welcher höhere Potenzen von “x” auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ungleichungen mit Brüchen, Beispiel 3 | A.26.04

Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), … Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die Ungleichung stimmt. (Letzteres tut man, indem man für jedes Intervall eine Zahl aus diesem Intervall in die Ungleichung einsetzt und schaut, ob man eine wahre Aussage oder einen Widerspruch erhält.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Lineare Ungleichungen, Beispiel 5 | A.26.01

Eine lineare Ungleichung ist eine Ungleichung, in der nur “x” vorkommt. Kein “x²” oder höhere Potenzen, keine Brüche, keine Wurzeln, aber natürlich “Kleinerzeichen” oder ein “Größerzeichen”. Es handelt sich um eine recht einfache Angelegenheit. Alles, was ein “x” hat, kommt auf die linke Seite, alles ohne “x” auf die rechte Seite. Teilt man durch etwas Negatives, dreht sich das Ungleichheitszeichen um.