Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 2 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel strecken, Beispiel 4 | A.04.09

Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom Scheitelpunkt aus streckt. Streckt man die Parabel an der x-Achse, ist das sehr einfach. Man multipliziert die ganze Parabel einfach mit dem Streckfaktor (egal in welcher Form die Parabel gegeben ist). Streckt man die Parabel vom Scheitelpunkt aus, muss man die Parabel in Scheitelform bringen [y=a*(x-xs)²+ys] und multipliziert nun nur “a” mit dem Streckfaktor. Anschließend kann man die Scheitelform wieder in Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 3 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Parabel strecken | A.04.09

Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom Scheitelpunkt aus streckt. Streckt man die Parabel an der x-Achse, ist das sehr einfach. Man multipliziert die ganze Parabel einfach mit dem Streckfaktor (egal in welcher Form die Parabel gegeben ist). Streckt man die Parabel vom Scheitelpunkt aus, muss man die Parabel in Scheitelform bringen [y=a*(x-xs)²+ys] und multipliziert nun nur “a” mit dem Streckfaktor. Anschließend kann man die Scheitelform wieder in Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 1 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel strecken, Beispiel 3 | A.04.09

Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom Scheitelpunkt aus streckt. Streckt man die Parabel an der x-Achse, ist das sehr einfach. Man multipliziert die ganze Parabel einfach mit dem Streckfaktor (egal in welcher Form die Parabel gegeben ist). Streckt man die Parabel vom Scheitelpunkt aus, muss man die Parabel in Scheitelform bringen [y=a*(x-xs)²+ys] und multipliziert nun nur “a” mit dem Streckfaktor. Anschließend kann man die Scheitelform wieder in Normalform umwandeln.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktion verschieben, Funktion strecken, Funktion spiegeln | A.23

Man kann Funktionen strecken (mit einem bestimmten Streckfaktor), Funktionen spiegeln und Funktionen verschieben. Es gibt für jedes je eine mathematische Vorgehensweise, welche sich zu merken lohnt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen strecken: so wird’s gemacht, Beispiel 5 | A.23.02

Wie kann man eine Funktion strecken? Man kann sie um den Faktor “c” in y-Richtung strecken, indem man die Funktion mit dieser Zahl “c” multipliziert. (Aus “f(x)” wird “c*f(x)”). Man streckt eine Funktion um den Faktor “d” in x-Richtung, indem man jeden Buchstaben “x” der Funktion durch “x/d” ersetzt. (Aus “x” wird “x/d”). Bemerkung: Ist ein Streckfaktor kleiner als 1, nennt man den Vorgang “Funktion stauchen” (die Funktion wird also gequetscht, nicht gestreckt). Ist ein Streckfaktor negativ, wird die Funktion zusätzlich noch an der x bzw. y-Achse gespiegelt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Parabel strecken, Beispiel 2 - A.04.09

Strecken und Stauchen sind in Mathe mehr oder weniger das Gleiche. Staucht man eine Parabel (quetscht sie also zusammen) entspricht das einem Strecken mit einem Streckfaktor von weniger als 1. Man kann Parabel auf unterschiedliche Weisen strecken. Am wichtigsten ist die Streckung in y-Richtung. Hier muss man unterscheiden, ob man die Parabel von der x-Achse aus oder vom Scheitelpunkt aus streckt. Streckt man die Parabel an der x-Achse, ist das sehr einfach. Man multipliziert die ganze Parabel einfach mit dem Streckfaktor (egal in welcher Form die Parabel gegeben ist). Streckt man die Parabel vom Scheitelpunkt aus, muss man die Parabel in Scheitelform bringen [y=a*(x-xs)²+ys] und multipliziert nun nur "a" mit dem Streckfaktor. Anschließend kann man die Scheitelform wieder in Normalform umwandeln.


Dieses Material ist Teil einer Sammlung