Anderer Ressourcentyp

Bildungsbereiche

Allgemeinbildende Schule Sekundarstufe I

Fach- und Sachgebiete

Mathematik

Medientypen

Anderer Ressourcentyp

Lernalter

12-13

Schlüsselwörter

Geraden Koordinaten Schnittpunkt

Sprachen

Deutsch

Video

Havonix Schulmedien-Verlag

Was bedeuten eigentlich die Funktionen in der Analysis? | A.11

In der Analysis haben die verschiedenen Funktionen verschiedene Bedeutungen. Je nachdem wo man “x” einsetzt erhält man verschiedene anschauliche Bedeutungen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen und Nullstellen lösen | A.12

Gleichungen lösen kann man, indem man mit dem Nenner multipliziert (den Nenner “wegmacht”) und alles auf eine Seite bringt (gleich Null setzt). Ab jetzt berechnet man sozusagen Nullstellen von einer “neuen Funktion”. Nullstellen sind Schnittpunkte mit der x-Achse. Man kann Nullstellen berechnen mit anhand von vier Möglichkeiten: a) ausklammern, b) Mitternachtsformel anwenden (p-q-Formel oder a-b-c-Formel), c) substituieren, d) Polynomdivision bzw. Horner-Schema anwenden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 1 - A.02.21

Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 2 | A.04.11

Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die Schnittpunkte).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente an Parabel | A.04.13

Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt “Tangente”. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel kommt Null raus). Wenn tatsächlich nur EINE Lösung für x rauskommt, ist das schon der Beweis, dass die Gerade eine Tangente ist. Der erhaltene x-Wert ist natürlich der x-Wert des Berührpunktes.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1a: wir zeichnen die Funktion

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1f: Schnittpunkt berechnen

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Seitenhalbierende berechnen, Beispiel 3 - A.02.12

Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. A.02.11). Übrigens berechnet man den Schnittpunkt von 2 oder 3 Seitenhalbierenden, so erhält man den Schwerpunkt des Dreiecks.


Dieses Material ist Teil einer Sammlung