Suchergebnis für: ** Zeige Treffer 1 - 10 von 12

Video

Havonix Schulmedien-Verlag

Basisrechnen: Mit diesem Trick kann man große Zahlen im Kopf dividieren, Beispiel 1 | B.09.02

Wenn man die Division von zwei großen Zahlen im Kopf rechnen muss (sprich: man muss eine Zahl durch die andere teilen), versucht man die Zahlen irgendwie sinnvoll zu runden. Zum ungefähren Überschlagen, kann man beide Zahlen aufrunden, oder beide Zahlen abrunden, dann ist das Ergebnis halbwegs sinnvoll abgeschätzt. Je nach Situation kann man noch den ein- oder anderen Trick anwenden, das hängt aber immer von den jeweiligen Zahlen ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Basisrechnen: Mit diesem Trick kann man große Zahlen im Kopf dividieren, Beispiel 3 | B.09.02

Wenn man die Division von zwei großen Zahlen im Kopf rechnen muss (sprich: man muss eine Zahl durch die andere teilen), versucht man die Zahlen irgendwie sinnvoll zu runden. Zum ungefähren Überschlagen, kann man beide Zahlen aufrunden, oder beide Zahlen abrunden, dann ist das Ergebnis halbwegs sinnvoll abgeschätzt. Je nach Situation kann man noch den ein- oder anderen Trick anwenden, das hängt aber immer von den jeweiligen Zahlen ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzeln dividieren: so berechnet man den Wurzelquotient, Beispiel 3 | B.04.02

Teilt man eine Wurzel durch eine andere, so nennt man das “Wurzelquotient”. Das ist sehr schön. Wie beim Produkt von Wurzeln auch, schreibt man die Wurzeln um (als Hochzahl hat man Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der Wurzel vereinfachen


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Basisrechnen: Mit diesem Trick kann man große Zahlen im Kopf dividieren, Beispiel 2 | B.09.02

Wenn man die Division von zwei großen Zahlen im Kopf rechnen muss (sprich: man muss eine Zahl durch die andere teilen), versucht man die Zahlen irgendwie sinnvoll zu runden. Zum ungefähren Überschlagen, kann man beide Zahlen aufrunden, oder beide Zahlen abrunden, dann ist das Ergebnis halbwegs sinnvoll abgeschätzt. Je nach Situation kann man noch den ein- oder anderen Trick anwenden, das hängt aber immer von den jeweiligen Zahlen ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Basisrechnen: Mit diesem Trick kann man große Zahlen im Kopf dividieren | B.09.02

Wenn man die Division von zwei großen Zahlen im Kopf rechnen muss (sprich: man muss eine Zahl durch die andere teilen), versucht man die Zahlen irgendwie sinnvoll zu runden. Zum ungefähren Überschlagen, kann man beide Zahlen aufrunden, oder beide Zahlen abrunden, dann ist das Ergebnis halbwegs sinnvoll abgeschätzt. Je nach Situation kann man noch den ein- oder anderen Trick anwenden, das hängt aber immer von den jeweiligen Zahlen ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzeln dividieren: so berechnet man den Wurzelquotient, Beispiel 1 | B.04.02

Teilt man eine Wurzel durch eine andere, so nennt man das “Wurzelquotient”. Das ist sehr schön. Wie beim Produkt von Wurzeln auch, schreibt man die Wurzeln um (als Hochzahl hat man Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der Wurzel vereinfachen


Dieses Material ist Teil einer Sammlung

Text

MatheGuru

Beweis, dass die Wurzel aus 2 irrational ist

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. An dieser Stelle wird mit Euklid verdeutlicht, warum die Wurzel aus 2 irrational ist.

Text

MatheGuru

Beweis für die Ableitung von tan(x)

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Den Beweis, dass sec²(x) die Ableitung von tan(x) ist, finden Sie hier.

Text

MatheGuru

Beweis für die Ableitung von cos(x)

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier finden Sie den Beweis, dass -sin(x) die Ableitung von cos(x) ist.

Text

MatheGuru

Gerade und ungerade Funktionen

Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Gerade und ungerade Funktionen besitzen besondere Eigenschaften bezüglich ihrer Symmetrie, die hier erläutert werden.