Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt | A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach “per Hingucken” löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem “Ergebnispunkt”) T(x|y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 2 | A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach “per Hingucken” löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem “Ergebnispunkt”) T(x|y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 4 | A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach “per Hingucken” löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem “Ergebnispunkt”) T(x|y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 1 | A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach “per Hingucken” löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem “Ergebnispunkt”) T(x|y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt, Beispiel 3 - A.01.05

Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach "per Hingucken" löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a - b) der Punkt ist, den man spiegeln möchte und S(u - v) der Punkt an welchem gespiegelt werden soll (sozusagen der Mittelpunkt oder Symmetriepunkt), so berechnet man die Koordinaten vom Spiegelpunkt (dem "Ergebnispunkt") T(x - y) folgendermaßen: x=2*u-a und y=2*v-b


Dieses Material ist Teil einer Sammlung