Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet, Beispiel 3 | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet, Beispiel 2 | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Physikaufgaben: was sie mit Mathe zu tun haben und wie man sie berechnet, Beispiel 1 | A.31.03

In der Mathematik braucht man von der Physik im Allgemeinen recht wenig. Man muss wissen, dass die Ableitung vom Weg bzw. von der Strecke die Geschwindigkeit ist. Eventuell muss man auch noch wissen, dass die Ableitung der Geschwindigkeitsfunktion die Beschleunigung ist. (Ganz, ganz selten muss man bei Physikaufgaben auch noch anderes abgefahrenes Zeug machen, aber das kommt wirklich nur einmal in einem Universumleben vor.)


Dieses Material ist Teil einer Sammlung

Bild, Simulation, Text

Landesmuseum Karlsruhe,

Tut Anch Amun - ein virtueller Ausstellungsrundgang - Animierter Rundgang durch die Tut Anch Amun-Ausstellung - Karlsruhe 2003

Diese interaktive Seite bietet einen virtuellen Rundgang durch die Ausstellung "Mythos Tut Anch Amun" in Karlsruhe von 2002 bis 2003. Durch Klick gelangen die Besucher zu Ansichten von Grabräumen, Sammlerobjekten des 18. und 19. Jahrhunderts, die die Ägyptenbegeisterung dokumentieren, bis hin zur Tut-Anch-Amun-Manie der 60er Jahre des 20. Jahrhunderts. 360° Ansichten von Ausstellungsstücken runden den virtuellen Rundgang ab. Von der Hauptseite ("zurück"-Link) aus kann auch ein Bericht über die Ausgrabungsarbeiten erreicht werden. Ebenso werden dort die einzelnen Ausstellungsobjekte kommentiert.

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1b: Nullstellen berechnen

Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2 | A.05.07

Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rentenrechnung: so rechnet man richtig | A.55.02

Wenn man z.B. monatlich einen bestimmten Betrag bei der Bank einzahlt und das Ganze verzinst wird, nennt man das Ratensparen oder Rentenrechnung oder Ratenzahlung. Das Endkapital “K” nach n Zeiteinheiten berechnet man mit der Formel: K=R*(q^n-1)/(q-1). “R” ist die regelmäßige Rate die einbezahlt wird, “q” ist der Wachstumsfaktor für den gilt: q=1+p/100. (Zumindest gilt die Formel bei nachschüssiger Verzinsung.) Bei vorschüssiger Verzinsung, wenn also die Rate am Anfang und die Verzinsung am Ende der Periode erfolgt, steht hinter dem Bruch noch ein “q”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Cardanische Formel zur Lösung einer Gleichung dritten Grades, Beispiel 1 | A.54.08

Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich braucht auch kein Mensch die Lösungsformel (grad weil sie so hässlich ist). Aber sie sollen ja nicht dumm sterben (und UNS hat das Filmen Spaß gemacht).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 1 | A.54.07

In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.


Dieses Material ist Teil einer Sammlung