Suchergebnis für: ** Zeige Treffer 1 - 10 von 125

Anderer Ressourcentyp

Der Logarithmus und die Logarithmengesetze

In diesem Lernvideo von echteinfach.tv wird der Begriff Logarithmus zunächst erklärt. Anschließend werden die Herleitungen der ersten beiden Logarithmengesetze anhand konkreter Beispiele beschrieben.?

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion ableiten, Beispiel 3 | A.44.02

Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 2 - A.44.04

Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmusfunktion: Gleichungen lösen, Beispiel 3 - A.44.05

Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch "x" oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. Normalerweise kann man nun gut nach "x" auflösen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 4 - A.44.6

Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schaubild einer Logarithmusfunktion erstellen, Beispiel 3 - A.44.07

ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schaubild einer Logarithmusfunktion erstellen, Beispiel 5 - A.44.07

ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmusfunktionen: Rechenbeispiele zur Funktionsanalyse - A.44.09

Ein paar Beispiele von Funktionsuntersuchungen von Logarithmus-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Definitionsmenge bestimmen | A.44.01

Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.


Dieses Material ist Teil einer Sammlung