Suchergebnis für: ** Zeige Treffer 1 - 10 von 125

Anderer Ressourcentyp

Der Logarithmus und die Logarithmengesetze

In diesem Lernvideo von echteinfach.tv wird der Begriff Logarithmus zunächst erklärt. Anschließend werden die Herleitungen der ersten beiden Logarithmengesetze anhand konkreter Beispiele beschrieben.?

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Senkrechte Asymptote berechnen, Beispiel 6 | A.16.01

Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmenregeln: welche man unbedingt beherrschen muss, Beispiel 6 - B.06.03

Um mit dem Logarithmus umgehen zu können, sollte man zwingend die wichtigsten Logarithmenregeln beherrschen. Die wichtigsten: 1. log(A)+log(B)=log(A*B) 2. log(A)-log(B)=log(A/B) 3. log(A^n)=n*log(A). Es gibt noch ein paar weitere Logarithmenregeln, denen hat es hier aber nicht gefallen. Die sind vorher ins Kino gegangen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mathe-Grundlagen | Potenzregeln, Wurzeln, Ausklammern, binomische Formel verständlich erklärt

Potenzregeln, Wurzeln, Ausklammern, binomische Formel, … wer kann diese Basisumfomungen noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier (fast) jede Grundlagenrechnung.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmenregeln: welche man unbedingt beherrschen muss, Beispiel 1 - B.06.03

Um mit dem Logarithmus umgehen zu können, sollte man zwingend die wichtigsten Logarithmenregeln beherrschen. Die wichtigsten: 1. log(A)+log(B)=log(A*B) 2. log(A)-log(B)=log(A/B) 3. log(A^n)=n*log(A). Es gibt noch ein paar weitere Logarithmenregeln, denen hat es hier aber nicht gefallen. Die sind vorher ins Kino gegangen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmus: einfache Rechenregeln, Beispiel 2 | B.06.02

Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmus: so einfach kann man den Logarithmus berechnen, Beispiel 4 | B.06.01

Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können. Manchmal helfen auch die Logarithmenregeln um den Logarithmus berechnen zu können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion: Nullstellen berechnen, Beispiel 4 | A.41.01

Nullstellen, der Schnittpunkt mit der x-Achse, führt natürlich auf das Problem einer Exponentialgleichung zurück. Um Exponentialgleichungen zu lösen, muss man zuerst nach dem e-Term auflösen. Danach wendet man den “ln” an (natürlicher Logarithmus). Vom e-Term bleibt nur noch der Exponent übrig und man kommt an “x” ran.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 2 | A.41.02

Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 5 | A.41.02

Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,


Dieses Material ist Teil einer Sammlung