Suchergebnis für: ** Zeige Treffer 1 - 10 von 88

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 1 | A.44.01

Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 3 | A.44.01

Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ableitung von komplizierten Logarithmusfunktionen | A.44.03

Für besonders hässliche Ableitungen braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer geht’s immer.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Ausklammern von etwas was gar nicht im Term vorhanden ist - B.01.04

Selten muss man aus Termen sogar irgend etwas ausklammern, was da gar nicht existiert. Nicht schlimm. Das was man ausklammert schreibt man in den Nenner, unter den Term.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Ausklammern: so klammert man einen Term richtig aus, Beispiel 1 - B.01.03

Wenn zwei Terme durch eine Strichrechnung verbunden sind und gleiche Buchstaben enthalten, so kann man diese Buchstaben "ausklammern". Z.B. aus "ax²+bx" kann man "x" ausklammern. == ax²+bx=x*(ax+b). Das Ausklammern ist also so eine Art "Rückwärts-Ausmultiplizieren".


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Terme: Was sind Terme überhaupt? Wie rechnet man mit Termen? - B.01

Wissen Sie genau was "Terme" ist? Ein Term ist in Mathe das, was im Alltag ein "Ding" ist. Ein Term kann so ziemlich alles sein. Allerdings wird der Begriff "Term" meistens für Klammern verwendet oder allgemein für irgendwelche Teile die mit "Mal" verbunden sind. ("Plus" und "Minus" sind also meist Anfang und Ende eines Terms.) In diesem Kapitel addieren und multiplizieren wir Terme (Klammern) miteinander. Mathematische Formulierung: Wir wenden sämtliche Grundrechenarten auf diverse Terme an.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 3 - B.05.02

Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, … und die Zahl vor der höchsten Potenz heißt "a". Nun kann man die Funktion umschreiben in f(x)=a*(x-x1)*(x-x2)*(x-x3)*... Einen Haken gibt es: das Ganze funktioniert nur, wenn es genau so viele Nullstellen gibt, wie die höchste Potenz der Funktion.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Linearfaktorzerlegung: so einfach geht's, Beispiel 3 - B.05.01

Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein "x" ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Ausklammern aus Gleichungen, Beispiel 6 | A.12.03

Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach “x” auflöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 4 | A.14.06

Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion auftauchen (nicht unten im Nenner). Nun substituiert man die Klammer als “u”, das “dx” am Ende des Integrals ersetzt man durch: “du / u'”, wobei u' die Ableitung der Klammer ist.


Dieses Material ist Teil einer Sammlung