Suchergebnis für: ** Zeige Treffer 1 - 10 von 74

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion ableiten, Beispiel 2 | A.45.01

Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte trigonometrische Funktion ableiten, Beispiel 4 | A.42.05

Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Komplizierte Exponentialfunktionen ableiten, Beispiel 3 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion integrieren bzw. aufleiten, Beispiel 1 | A.41.05

Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch “lineare Substitution” genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Exponentialfunktion integrieren bzw. aufleiten, Beispiel 3 | A.41.05

Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch “lineare Substitution” genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == F(x)=a/b*e^(bx+c).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Ableitung von komplizierten Wurzelfunktionen, Beispiel 3 | A.45.02

Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Wurzelfunktion integrieren bzw. aufleiten, Beispiel 1 | A.45.03

Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl “0,5”. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Integrieren von komplizierten Wurzelfunktionen, Beispiel 2 | A.45.04

Bei hässlichen Stammfunktionen, die eine Wurzel enthalten, braucht man meist die Substitution oder die Produktintegration (partielle Integration). Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Gebrochen-rationale Funktionen integrieren bzw. aufleiten, Beispiel 2 | A.43.04

Es gibt drei Typen von gebrochen-rationalen Funktionen, die man verhältnismäßig einfach integrieren kann. 1.Funktionen, die im Nenner (unten) kein “+” oder “-” haben. Diese Funktionen kann man aufspalten und dann recht einfach integrieren. 2. Funktionen, die oben nur eine Zahl haben, unten eine Klammer ohne Hochzahl. Die Stammfunktion wird führt man auf den Logarithmus (auf ln(..)) zurück. 3. Funktionen, die oben nur eine Zahl haben, unten eine Klammer mit Hochzahl. Man schreibt die Funktion um, den Nenner schreibt man hoch, in dem die Hochzahl negativ wird. Nun kann man die Funktion integrieren.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit der Kettenregel eine verkettete Funktion ableiten | A.13.03

Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, …). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit “Mal” verbunden hinten angehängt werden muss.


Dieses Material ist Teil einer Sammlung