Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Einseitiger Hypothesentest mit GTR oder CAS, Beispiel 6 | W.20.04

Bei einem einseitigen Hypothesentest tritt ein Ereignis ein, das eher selten passieren sollte (z.B. würfelt man mit einem Würfel 100 Mal und es erscheint nur fünf Mal eine Sechs). Nun ist die große Frage: War das nur Zufall oder stimmt etwas nicht? (z.B. könnte der Würfel getürkt sein und nicht jedes sechste Mal eine Sechs werfen). Um die Frage zu beantworten erstellt man ein einseitiges Konfidenzintervall und schaut, ob das Ereignis noch innerhalb dieses Intervalls liegt oder außerhalb. Liegt das Ereignis noch innerhalb des Konfidenzintervalls, so war´s wohl nur ein unglücklicher Zufall (Man nimmt die Hypothese, dass der Würfel in Ordnung sei, an). Liegt das Ereignis außerhalb des Konfidenzintervalls (also im sogenannten Ablehnungsbereich oder Signifikanzniveau), so stimmt etwas nicht (man verwirft die Hypothese, dass der Würfel in Ordnung sei und behauptet, er wäre getürkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Einseitiger Hypothesentest über Normalverteilung berechnen, Beispiel 2 | W.20.08

Bei einem einseitigen Hypothesentest tritt ein Ereignis ein, das eher selten passieren sollte (z.B. würfelt man mit einem Würfel 100 Mal und es erscheint nur fünf Mal eine Sechs). Nun ist die große Frage: War das nur Zufall oder stimmt etwas nicht? (z.B. könnte der Würfel getürkt sein und nicht jedes sechste Mal eine Sechs werfen). Um die Frage zu beantworten erstellt man ein einseitiges Konfidenzintervall und schaut, ob das Ereignis noch innerhalb dieses Intervalls liegt oder außerhalb. Liegt das Ereignis noch innerhalb des Konfidenzintervalls, so war´s wohl nur ein unglücklicher Zufall (Man nimmt die Hypothese, dass der Würfel in Ordnung sei, an). Liegt das Ereignis außerhalb des Konfidenzintervalls (also im sogenannten Ablehnungsbereich oder Signifikanzniveau), so stimmt etwas nicht (man verwirft die Hypothese, dass der Würfel in Ordnung sei und behauptet, er wäre getürkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Beidseitiges Konfidenzintervall über Tabelle berechnen | W.20.09

Bei einer Wahrscheinlichkeitsverteilung (Binomial- oder Normalverteilung) hat man oft zwei Grenzen gegeben und fragt dann mit welcher W.S. ein folgendes Ereignis zwischen diesen Grenzen liegen wird. Bei einem Konfidenzintervall ist die Fragestellung umgekehrt. Man hat eine W.S. gegeben und fragt, wie man zwei Grenzen wählen muss, damit die W.S. zwischen diesen Grenzen genau dem gegebenen Wert entspricht. Der Bereich zwischen den beiden errechneten Grenzen heißt “Konfidenzintervall” oder “Vertrauensintervall”. Die beiden Randbereiche (außerhalb des Konfidenzintervalls) heißen Fehlerbereiche, ihre Wahrscheinlichkeit heißt “Irrtumswahrscheinlichkeit”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Einseitiger Hypothesentest über Tabelle berechnen, Beispiel 4 | W.20.12

Bei einem einseitigen Hypothesentest tritt ein Ereignis ein, das eher selten passieren sollte (z.B. würfelt man mit einem Würfel 100 Mal und es erscheint nur fünf Mal eine Sechs). Nun ist die große Frage: War das nur Zufall oder stimmt etwas nicht? (z.B. könnte der Würfel getürkt sein und nicht jedes sechste Mal eine Sechs werfen). Um die Frage zu beantworten erstellt man ein einseitiges Konfidenzintervall und schaut, ob das Ereignis noch innerhalb dieses Intervalls liegt oder außerhalb. Liegt das Ereignis noch innerhalb des Konfidenzintervalls, so war´s wohl nur ein unglücklicher Zufall (Man nimmt die Hypothese, dass der Würfel in Ordnung sei, an). Liegt das Ereignis außerhalb des Konfidenzintervalls (also im sogenannten Ablehnungsbereich oder Signifikanzniveau), so stimmt etwas nicht (man verwirft die Hypothese, dass der Würfel in Ordnung sei und behauptet, er wäre getürkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Beidseitiges Konfidenzintervall mit GTR oder CAS berechnen, Beispiel 3 | W.20.01

Bei einer Wahrscheinlichkeitsverteilung (Binomial- oder Normalverteilung) hat man oft zwei Grenzen gegeben und fragt dann mit welcher W.S. ein folgendes Ereignis zwischen diesen Grenzen liegen wird. Bei einem Konfidenzintervall ist die Fragestellung umgekehrt. Man hat eine W.S. gegeben und fragt, wie man zwei Grenzen wählen muss, damit die W.S. zwischen diesen Grenzen genau dem gegebenen Wert entspricht. Der Bereich zwischen den beiden errechneten Grenzen heißt “Konfidenzintervall” oder “Vertrauensintervall”. Die beiden Randbereiche (außerhalb des Konfidenzintervalls) heißen Fehlerbereiche, ihre Wahrscheinlichkeit heißt “Irrtumswahrscheinlichkeit”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Beidseitiges Konfidenzintervall mit GTR oder CAS berechnen, Beispiel 2 | W.20.01

Bei einer Wahrscheinlichkeitsverteilung (Binomial- oder Normalverteilung) hat man oft zwei Grenzen gegeben und fragt dann mit welcher W.S. ein folgendes Ereignis zwischen diesen Grenzen liegen wird. Bei einem Konfidenzintervall ist die Fragestellung umgekehrt. Man hat eine W.S. gegeben und fragt, wie man zwei Grenzen wählen muss, damit die W.S. zwischen diesen Grenzen genau dem gegebenen Wert entspricht. Der Bereich zwischen den beiden errechneten Grenzen heißt “Konfidenzintervall” oder “Vertrauensintervall”. Die beiden Randbereiche (außerhalb des Konfidenzintervalls) heißen Fehlerbereiche, ihre Wahrscheinlichkeit heißt “Irrtumswahrscheinlichkeit”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Einseitiger Hypothesentest mit GTR oder CAS, Beispiel 5 | W.20.04

Bei einem einseitigen Hypothesentest tritt ein Ereignis ein, das eher selten passieren sollte (z.B. würfelt man mit einem Würfel 100 Mal und es erscheint nur fünf Mal eine Sechs). Nun ist die große Frage: War das nur Zufall oder stimmt etwas nicht? (z.B. könnte der Würfel getürkt sein und nicht jedes sechste Mal eine Sechs werfen). Um die Frage zu beantworten erstellt man ein einseitiges Konfidenzintervall und schaut, ob das Ereignis noch innerhalb dieses Intervalls liegt oder außerhalb. Liegt das Ereignis noch innerhalb des Konfidenzintervalls, so war´s wohl nur ein unglücklicher Zufall (Man nimmt die Hypothese, dass der Würfel in Ordnung sei, an). Liegt das Ereignis außerhalb des Konfidenzintervalls (also im sogenannten Ablehnungsbereich oder Signifikanzniveau), so stimmt etwas nicht (man verwirft die Hypothese, dass der Würfel in Ordnung sei und behauptet, er wäre getürkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Beidseitiges Konfidenzintervall über Normalverteilung berechnen, Beispiel 3 | W.20.05

Beidseitiges Konfidenzintervall: Bei einer Wahrscheinlichkeitsverteilung (Binomial- oder Normalverteilung) hat man oft zwei Grenzen gegeben und fragt dann mit welcher W.S. ein folgendes Ereignis zwischen diesen Grenzen liegen wird. Bei einem Konfidenzintervall ist die Fragestellung umgekehrt. Man hat eine W.S. gegeben und fragt, wie man zwei Grenzen wählen muss, damit die W.S. zwischen diesen Grenzen genau dem gegebenen Wert entspricht. Der Bereich zwischen den beiden errechneten Grenzen heißt “Konfidenzintervall” oder “Vertrauensintervall”. Die beiden Randbereiche (außerhalb des Konfidenzintervalls) heißen Fehlerbereiche, ihre Wahrscheinlichkeit heißt “Irrtumswahrscheinlichkeit”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Einseitiger Hypothesentest über Normalverteilung berechnen, Beispiel 1 | W.20.08

Bei einem einseitigen Hypothesentest tritt ein Ereignis ein, das eher selten passieren sollte (z.B. würfelt man mit einem Würfel 100 Mal und es erscheint nur fünf Mal eine Sechs). Nun ist die große Frage: War das nur Zufall oder stimmt etwas nicht? (z.B. könnte der Würfel getürkt sein und nicht jedes sechste Mal eine Sechs werfen). Um die Frage zu beantworten erstellt man ein einseitiges Konfidenzintervall und schaut, ob das Ereignis noch innerhalb dieses Intervalls liegt oder außerhalb. Liegt das Ereignis noch innerhalb des Konfidenzintervalls, so war´s wohl nur ein unglücklicher Zufall (Man nimmt die Hypothese, dass der Würfel in Ordnung sei, an). Liegt das Ereignis außerhalb des Konfidenzintervalls (also im sogenannten Ablehnungsbereich oder Signifikanzniveau), so stimmt etwas nicht (man verwirft die Hypothese, dass der Würfel in Ordnung sei und behauptet, er wäre getürkt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Stochastik | Statistik | Wahrscheinlichkeit: Einseitiger Hypothesentest über Normalverteilung berechnen, Beispiel 6 | W.20.08

Bei einem einseitigen Hypothesentest tritt ein Ereignis ein, das eher selten passieren sollte (z.B. würfelt man mit einem Würfel 100 Mal und es erscheint nur fünf Mal eine Sechs). Nun ist die große Frage: War das nur Zufall oder stimmt etwas nicht? (z.B. könnte der Würfel getürkt sein und nicht jedes sechste Mal eine Sechs werfen). Um die Frage zu beantworten erstellt man ein einseitiges Konfidenzintervall und schaut, ob das Ereignis noch innerhalb dieses Intervalls liegt oder außerhalb. Liegt das Ereignis noch innerhalb des Konfidenzintervalls, so war´s wohl nur ein unglücklicher Zufall (Man nimmt die Hypothese, dass der Würfel in Ordnung sei, an). Liegt das Ereignis außerhalb des Konfidenzintervalls (also im sogenannten Ablehnungsbereich oder Signifikanzniveau), so stimmt etwas nicht (man verwirft die Hypothese, dass der Würfel in Ordnung sei und behauptet, er wäre getürkt).


Dieses Material ist Teil einer Sammlung