Video

Havonix Schulmedien-Verlag

Geradengleichung bestimmen über Punktsteigungsform PSF, Beispiel 1 | A.02.09

Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Steigung und die Koordinaten des Punktes für “m”, “x0” und “y0” in die Punkt-Steigungs-Form (PSF) ein und löst nach “y” auf. Wie lautet die Gleichung der PSF überhaupt? Es gibt mehrere Möglichkeiten für die PSF. Hier die beiden wichtigsten: a) “y=m*(x-x0)+y0” b) “m=(y-y0)/(x-x0)”


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mittelsenkrechte berechnen, Beispiel 2 - A.02.14

Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt der Dreieckseite berechnet man in dem man die Koordinaten beiden Eckpunkte zusammenzählt und durch 2 teilt. Mit der Seiten der Mittelsenkrechten und der Seitenmitte als Punkt bestimmt man nun die Geradengleichung der Mittelsenkrechten (A.02.08 und A.02.09).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 3 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 1 | Geraden und Parabeln: Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 5 | A.02.15

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet “m=tan(alpha)”. Hierbei ist “m” die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den Schnittwinkel zwischen ZWEI Geraden berechnen, muss man für jede den Anstiegswinkel berechnen und diese dann zusammenzählen (oder abziehen, wenn beide Geraden steigen oder wenn beide fallen).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16

Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet “tan(alpha)=(m2-m1)/(1+m1*m2)”. Hierbei sind “m1” und “m2” die Steigungen der beiden Geraden. Man setzt “m1” und “m2” in die Formel ein und erhält den Schnittwinkel “alpha”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 1 - A.02.21

Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 2 - A.03.02

Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der Grundliniensteigung. Zusammen mit den Koordinaten des gegenüberliegenden Eckpunktes kann man die Geradengleichung der Höhe bestimmen. Diese Lotgerade schneidet man mit der Gleichung der Grundlinie (die man natürlich ebenfalls bestimmen muss). Der Schnittpunkt ist der Lotfußpunkt. Der Abstand vom Lotfußpunkt zum gegenüberliegenden Eckpunkt ist die Länge der Höhe.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Schnittpunkte einer Parabel mit einer Gerade berechnen, Beispiel 2 | A.04.11

Sucht man den Schnittpunkt einer Parabel mit einer Gerade, muss man beide gleichsetzen. Nun bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in die Parabel oder in die Gerade ein, hat man auch die y-Werte und damit den kompletten Schnittpunkt (bzw. die Schnittpunkte).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Tangente an Parabel | A.04.13

Eine Gerade, die eine Parabel (oder irgend etwas anders) berührt, heißt “Tangente”. Eine Tangente hat mit einer Parabel nur einen einzigen gemeinsamen Punkt: den Berührpunkt. Wie zeigt man also, dass eine Gerade Tangente von einer Parabel ist? Man berechnet den Schnittpunkt (setzt also beide gleich) und sollte nur eine einzige Lösung für x erhalten (unter der Wurzel kommt Null raus). Wenn tatsächlich nur EINE Lösung für x rauskommt, ist das schon der Beweis, dass die Gerade eine Tangente ist. Der erhaltene x-Wert ist natürlich der x-Wert des Berührpunktes.


Dieses Material ist Teil einer Sammlung