Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen verschieben: so wird’s gemacht, Beispiel 1 | A.23.01

Wie kann man Funktion verschieben? Bei einer Verschiebung um “a” nach links, ersetzt man in der Funktion jeden Buchstaben “x” durch “x+a”. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man “x” durch “x-a” ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert “b” nach oben oder unten, indem man an die Funktion f(x) diese Zahl dranhängt. Verschieben um “b” nach oben ist somit: “f(x)+b”, Verschieben nach unten ist: “f(x)-b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Funktionen verschieben: so wird’s gemacht, Beispiel 4 | A.23.01

Wie kann man Funktion verschieben? Bei einer Verschiebung um “a” nach links, ersetzt man in der Funktion jeden Buchstaben “x” durch “x+a”. Ebenso erreicht man ein Verschieben von Funktionen nach rechts, indem man “x” durch “x-a” ersetzt. Verschiebungen von Funktionen in die y-Richtung sind einfacher. Man verschiebt eine Funktion um einen Wert “b” nach oben oder unten, indem man an die Funktion f(x) diese Zahl dranhängt. Verschieben um “b” nach oben ist somit: “f(x)+b”, Verschieben nach unten ist: “f(x)-b”.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 4 | A.24.01

Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das Gleiche gilt natürlich auch für Tiefpunkte, Wendepunkte und Sonstiges. (Geschwollen formuliert: die Ortskurve aller Extrem- und Wendepunkte ist der “geometrische Ort aller Extrem- und Wendepunkte”.) Um eine Ortskurve zu bestimmen, braucht man zuerst die Koordinaten des entsprechenden Punktes in Abhängigkeit vom Parameter. Danach ist´s einfach: in der “x”-Gleichung nach dem Parameter auflösen und in die “y”-Gleichung einsetzen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Funktionen spiegeln über Verschieben | A.23.05

Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um “-a”, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um “a” zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um “-b”, spiegelt dann an der x-Achse und verschiebt danach die Funktion wieder um “b” zurück. Braucht man von einer Funktion die Punktspiegelung an einem Punkt S(a|b), so muss man zwei Achsenspiegelungen durchführen: nämlich die Spiegelung an der senkrechten Gerade x=a UND an der waagerechten Gerade y=b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Kurvenschar, Funkionsschar: was das ist und wie man damit rechnet | A.24

Eine Funktionenschar ist einfach eine Funktion, in welcher ein Parameter vorkommt. (Bei einer Funktion “f(x)” heißt “x” immer “Variable”, jeder andere Buchstabe heißt “Parameter” und ist wird wie eine Zahl behandelt). Da man für den Parameter unendlich viele Werte einsetzen könnte, hat man unendlich viele Kurven, die alle ähnlich aussehen (und Funktionsschar oder Kurvenschar heißen). Die Funktionsuntersuchung läuft vom Prinzip natürlich gleich ab, wie bei Funktionen ohne Parameter (nur eben etwas hässlicher).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Maximaler Umfang und minimaler Umfang berechnen | A.21.04

Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Maximaler Umfang und minimaler Umfang berechnen, Beispiel 2 | A.21.04

Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Abstand zwischen Funktionen berechnen | A.21.06

Die vermutlich häufigste Variante von Extremwertaufgaben ist der Unterschied zwischen zwei Funktionen. Es geht hierbei um den senkrecht gemessenen Abstand zwischen zwei Funktionen. Man zieht dafür die beiden Funktionen von einander ab (man bestimmt also die Differenzfunktion) und bestimmt davon das Maximum oder Minimum.


Dieses Material ist Teil einer Sammlung