Suchergebnis für: ** Zeige Treffer 1 - 10 von 597

Video

Havonix Schulmedien-Verlag

Exponentialfunktion: Ableitung, Beispiel 1 | A.41.03

Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art “innere Ableitung” ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == f'(x)=a*e^(bx+c)*b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentialfunktion: Ableitung, Beispiel 6 | A.41.03

Die Ableitung eines e-Terms berechnet man relativ einfach. Der e-Term bleibt komplett unverändert erhalten, zusätzlich multipliziert man ihn noch mit der Ableitung der Hochzahl. Da die Ableitung der Hochzahl eine Art “innere Ableitung” ist, wendet man im Prinzip die Kettenregel an. Als Formel könnte man anwenden: f(x)=a*e^(bx+c) == f'(x)=a*e^(bx+c)*b.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung anwenden müssen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Integrieren von komplizierten Exponentialfunktionen, Beispiel 2 | A.41.06

Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben, schwierige Übungen | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Mit Trapezregel Flächeninhalt bestimmen | A.32.05

Die Sehnen-Trapez-Regel (oder Trapezregel)ist ein Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Die Sehnen-Trapezformel liefert im Normalfall bessere Ergebnisse als die Keplerschen Fassregel (siehe Kap.2.12.4), dafür ist sie jedoch nicht so schnell und supereinfach. Trotzdem ist die Sehnentrapezregel nicht schwer zu verstehen. Eigentlich setzt man nur x- und y-Werte in eine Formel ein. (Die Sehnen-Trapez-Regel funktioniert damit ähnlich wie die Simpson-Regel oder die Tangenten-Trapez-Regel und liefert auch ähnlich gute Ergebnisse. [Die letzten beiden Methoden gibt’s jedoch nicht auf der Mathe-Seite]).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Kostenrechnung: Umsatz, Kosten, Gewinn berechnen | A.33.01

Die Grundlagen der Kostenrechnung sind sehr einfach. Die Einnahmen des Unternehmens heißen Umsatz oder Erlös und werden mit E(x) bezeichnet. Die Erlösfunktion berechnet man über Preis mal Menge. Es gilt also: E(x)=p*x. Der Gewinn ist natürlich die Differenz von Erlös und Kosten. Dementsprechend erhält man die Gewinnfunktion durch die Erlösfunktion abzüglich der Kostenfunktion, also G(x)=E(x)-K(x).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Lineares Wachstum berechnen, Beispiel 1 | A.30.01

Das lineare Wachstum ist sehr, sehr einfach. Es handelt sich hierbei einen Bestand mit einer gleichmäßigen Entwicklung, es kommt also in jeder Zeitspanne immer die gleiche Menge dazu (oder geht weg). Das lineare Wachstum wird durch eine Gerade beschrieben, der Ansatz lautet also: B(t)=m*t+b


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Exponentielles Wachstum berechnen, Beispiel 1 | A.30.03

Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die Verdopplungszeit (bei exponentieller Zunahme) bzw. die Halbwertszeit (bei exponentielles Abnahme). Egal wann man mit der Messung beginnt, es dauert bei jedem Vorgang immer gleich lang, bis sich der Bestand verdoppelt (bzw. halbiert) hat. Exponentielles Wachstum wird durch die Funktionsgleichung f(t)=a*e^(kt) beschrieben.


Dieses Material ist Teil einer Sammlung