Suchergebnis für: ** Zeige Treffer 1 - 10 von 125

Anderer Ressourcentyp

Berechnung Flächeninhalt und Umfang

Auf den Seiten von Herrn Rehberg finden Schülerinnen und Schüler Aufgaben zu Flächenberechnungen und Umfangsberechnungen bei Quadraten und Rechtecken. Es gibt verschiedene Schwierigkeitsstufen die gewählt werden können. Ein Klick lohnt sich!

Video

Havonix Schulmedien-Verlag

Analytische Geometrie (Vektoren): Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 1 | V.05.06

Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rechnen können mit GTR / CAS - Abituraufgabe 3a | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rechnen können mit GTR / CAS - Abituraufgabe 3c | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Rechnen können mit GTR / CAS - Abituraufgabe 1c | A.29.2

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man muss den ein- oder anderen Schnittpunkt berechnen, man braucht Flächenberechnung, Rotation einer Fläche um die x-Achse und natürlich will niemand auf eine Extremwertaufgabe verzichten. Der Sinn ist alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Extremwertaufgaben, schwierige Übungen, Beispiel 1 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Fläche und Flächeninhalt eines Dreiecks mit Flächeninhaltsformel berechnen, Beispiel 2 - A.03.04

Es gibt tatsächlich auch eine stupide Formel für Dreiecksflächen. Stupid im Sinne von: man muss bei dieser Flächeninhaltsformel nichts denken. Man setzt einfach nur die Koordinaten der Eckpunkte des Dreiecks ein und erhält die Dreiecksfläche. Die Formel für die Fläche lautet: A=½*[x1*(y2-y3)+x2*(y3-y1)+x3*(x1-y2)]. Hierbei sind (x1 - y1), (x2 - y2) und (x3 - y3) die Koordinaten der Eckpunkte des Dreiecks (die Reihenfolge spielt keine Rolle).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Achsparallele Flächen berechnen, Beispiel 3 - A.03.01

Falls eine Dreieckfläche oder eine Rechteckfläche mindestens eine Seite hat, die parallel zu einer der Koordinatenachsen ist, wählt man diese Seite als Grundlinie. Die Länge der Grundlinie kann man anhand der Koordinaten der Endpunkte ablesen. Die Höhe steht senkrecht auf der Grundlinie. Die Länge der Höhe kann man ebenfalls ablesen. Nun kann man über die Formel A=½*g*h (beim Dreieck) oder A=g*h (beim Rechteck) den Flächeninhalt berechnen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Kurvendiskussion Beispiel 2c: Nullstellen berechnen | A.19.02

In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als “Bonbon” bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.


Dieses Material ist Teil einer Sammlung