Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 4 | A.21.03

Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere Seite ist meist senkrecht (wird also als Differenz der y-Werte berechnet). Dieses in die Formel einsetzen und schon ist die Aufgabe halb gelöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 2 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Extremwertaufgaben, schwierige Übungen, Beispiel 4 | A.21.09

Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ausschneiden.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 3 | Tiefere Einblicke in die Funktionsanalyse: Rechnen können mit GTR / CAS - Abituraufgabe 3d | A.29.04

Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Es ist eine anwendungsorientierte Aufgabe, in welcher es um das Profil (den Querschnitt) von einem Flussbett geht. (Übrigens wohnt eine Krabbe drin). Mathematisch gesehen, ist so ein Flussbett ein Prisma. Hauptaufgaben sind: Berechnung einer Fläche; Abstand zweier Punkte und eine recht hässliche Berechnung mit einer Tangente.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche berechnen über Integral | A.18.01

Kurzer Überblick über die Vorgehensweise bei Integralen: Man kann eine Fläche berechnen, indem man das Integral von “oberer Funktion” minus “unterer Funktion” bildet. (Eine “Funktion integrieren” ist also nichts anderes als das Bilden der Stammfunktion). In die Stammfunktion setzt man nun die beiden Integralgrenzen ein und zieht die Ergebnisse von einander ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 4 | A.18.02

Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 6 | A.18.02

Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche zwischen zwei Funktionen berechnen; eingeschlossene Fläche, Beispiel 4 | A.18.03

Braucht man die Fläche zwischen zwei Funktionen, berechnet man das Integral von der Differenz beider Funktionen. (Man zieht die Funktionen also voneinander ab und leitet das Ergebnis auf). Die Integralgrenzen sind entweder die Schnittpunkte der Funktionen oder sie sind in der Aufgabenstellung gegeben. Zum Schluss setzt man beide Grenzen in die “Aufleitung” ein und zieht die Ergebnisse von einander ab.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 4 | A.18.04

Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die Fläche auf. (Meistens.)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Uneigentliche Integrale berechnen, Beispiel 2 | A.18.05

Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch “unendlich”. Zur Schreibweise: Normalweise darf man “unendlich” nicht als Integralgrenze hinschreiben. Also schreibt man “u” (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss “u” gegen unendlich laufen und schaut, was denn nun als Ergebnis rauskommt (also eine normale Zahl oder etwa doch Unendlich)?


Dieses Material ist Teil einer Sammlung