Suchergebnis für: ** Zeige Treffer 1 - 10 von 68

Video

Havonix Schulmedien-Verlag

Logarithmus: einfache Rechenregeln, Beispiel 1 | B.06.02

Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmus: so einfach kann man den Logarithmus berechnen, Beispiel 3 | B.06.01

Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können. Manchmal helfen auch die Logarithmenregeln um den Logarithmus berechnen zu können.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzeln dividieren: so berechnet man den Wurzelquotient, Beispiel 3 | B.04.02

Teilt man eine Wurzel durch eine andere, so nennt man das “Wurzelquotient”. Das ist sehr schön. Wie beim Produkt von Wurzeln auch, schreibt man die Wurzeln um (als Hochzahl hat man Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der Wurzel vereinfachen


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Wurzeln multiplizieren: so berechnet man ein Wurzelprodukt, Beispiel 1 | B.04.01

Wenn man Wurzeln miteinander multipliziert, so nennt man das “Wurzelprodukt”. Das ist sehr schön. Man schreibt eigentlich nur die Wurzeln um (als Hochzahl hat man dann eben Brüche) und wendet irgendwelche Potenzregeln an. Wenn es Wurzeln vom gleichen Typ sind (also z.B. man hat überall nur dritte Wurzeln), kann man auch alles unter EINE Wurzel schreiben und dann unter der Wurzel vereinfachen


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Mit Termen rechnen, die keine gleiche Hochzahl und keine gleiche Basis haben, Beispiel 1 | B.03.05

Wenn irgendwelche Terme weder eine gleiche Hochzahl noch eine gleiche Basis haben, so kann man erst Mal nichts machen. Dennoch kann man manchmal tricksen, z.B. in dem man die Basis zerlegt, anders zusammenfasst oder sich sonst irgendwas einfallen lässt. (Dieses haben wir “Zusammenfassen durch Basisangleich” genannt, damit es sich professionell anhört). Manchmal kann man auch tatsächlich nichts machen, dann ist man ein bisschen traurig.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 3 | B.03.04

Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 2

Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzen mit gleicher Basis, Beispiel 5 | B.03.01

Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Potenzen mit gleicher Basis | B.03.01

Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Logarithmus: einfache Rechenregeln, Beispiel 2 | B.06.02

Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können.


Dieses Material ist Teil einer Sammlung