Suchergebnis für: ** Zeige Treffer 1 - 10 von 205

Video

Havonix Schulmedien-Verlag

Senkrechte Asymptote berechnen | A.16.01

Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Senkrechte Asymptote berechnen, Beispiel 3 | A.16.01

Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Wurzel integrieren; Brüche integrieren, Beispiel 2 | A.14.02

Viele Wurzeln und Brüche kann man so umschreiben, so dass die Ableitung wesentlich einfacher wird. Brüche: Wenn oben im Zähler kein “x” steht, sondern nur Zahlen und unten im Nenner weder “+” noch “-”, kann man “x” von unten aus dem Nenner hoch in den Zähler bringen, indem man das Vorzeichen der Hochzahl wechselt. Wurzeln: man schreibt die Wurzel um, und zwar in Klammer hoch 0,5. Dritte Wurzeln werden zu “x” hoch “ein Drittel”,...


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 5 | A.16.02

Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man “x” in der Funktion gegen + oder - unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter “verwandte Themen”).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Partialbruchzerlegung, Beispiel 3 | A.14.07

Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des Nenners um die Partialbrüche zu erhalten [Erklärung: siehe Filme oder Buch]. Schritt 3) Man multipliziert mit dem Hauptnenner, um die Zahlen zu erhalten, die den Zähler der Partialbrüche bilden. Schritt 4) Man integriert nun die (relativ einfachen) Partialbrüche.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Partialbruchzerlegung, Beispiel 5 | A.14.07

Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des Nenners um die Partialbrüche zu erhalten [Erklärung: siehe Filme oder Buch]. Schritt 3) Man multipliziert mit dem Hauptnenner, um die Zahlen zu erhalten, die den Zähler der Partialbrüche bilden. Schritt 4) Man integriert nun die (relativ einfachen) Partialbrüche.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Wurzel ableiten; Brüche ableiten, Beispiel 4 | A.13.02

Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein “x” steht, sondern nur Zahlen und unten weder “+” noch “-”, kann man “x” von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu “x” hoch “ein Drittel”,...)


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 3 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 8 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.