Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Linearfaktorzerlegung, Beispiel 1 | A.46.03

Linearfaktoren sind Klammern, die mit “mal” verbunden sind. In den Klammern darf “x” keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, … sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter “a” erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 4 | Die Verschiedenen Funktionstypen: Linearfaktorzerlegung, Beispiel 3 | A.46.03

Linearfaktoren sind Klammern, die mit “mal” verbunden sind. In den Klammern darf “x” keine Hochzahl haben. Braucht man von einer Funktion in Linearfaktorzerlegung, hat die Funktion die Form: f(x)=a·(x-x1)·(x-x2)·(x-x3)·.... x1, x2, x3, … sind hierbei die Nullstellen der Funktion. Fazit: Man braucht die Nullstellen einer Funktion, dann kann man die Linearfaktorzerlegung schnell aufstellen. (Den Parameter “a” erhält man zum Schluss recht einfach, in dem man einen beliebigen Punkt einsetzt).


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 3 | B.05.02

Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, … und die Zahl vor der höchsten Potenz heißt “a”. Nun kann man die Funktion umschreiben in f(x)=a*(x-x1)*(x-x2)*(x-x3)*... Einen Haken gibt es: das Ganze funktioniert nur, wenn es genau so viele Nullstellen gibt, wie die höchste Potenz der Funktion.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Linearfaktorzerlegung: so einfach geht's, Beispiel 3 | B.05.01

Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein “x” ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Höhere Gleichungen lösen, Beispiel 2 | G.05.03

Wie wir bereits vorher bereits erwähnten, gibt es drei Möglichkeiten eine Gleichung zu lösen: 1. “x” ausklammern, 2. a-b-c-Formel/p-q-Formel, 3. Substitution. (Es gibt noch eine vierte Möglichkeit: die Polynomdivision, die ist an dieser Stelle relativ unwichtig). Wir werden hier die schlimmsten Gleichungen des Universums in Nullkommanichts lösen. Wir machen sie platt. Wir machen die Gleichungen hier so klein, dass die glauben, sie wären keine Gleichungen sondern kleine Abwaschlappen vom Pizzaservice. WIR SIND DIE GLEICHUNGSTOTMACHER!


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 2 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 7 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Gleichungen auf Normalform bringen, Beispiel 9 | A.12.01

Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss auf eine Seite gebracht werden, damit auf der anderen Seite “=0” steht.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Ausklammern aus Gleichungen, Beispiel 1 | A.12.03

Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach “x” auflöst.


Dieses Material ist Teil einer Sammlung

Video

Havonix Schulmedien-Verlag

Analysis 2 | Grundlagen der Funktionsanalyse: Ausklammern aus Gleichungen, Beispiel 6 | A.12.03

Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach “x” auflöst.


Dieses Material ist Teil einer Sammlung